Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Bioengineered Polymer/Composites as Advanced Biological Detection of Sorbitol: An Application in Healthcare Sector

Author(s): Ruma Rani, Geeta Singh*, Kanisht Batra and Prasad Minakshi*

Volume 20, Issue 11, 2020

Page: [963 - 981] Pages: 19

DOI: 10.2174/1568026620666200306131416

Price: $65

conference banner
Abstract

Bioengineered polymers and nanomaterials have emerged as promising and advanced materials for the fabrication and development of novel biosensors. Nanotechnology-enabled biosensor methods have high sensitivity, selectivity and more rapid detection of an analyte. Biosensor based methods are more rapid and simple with higher sensitivity and selectivity and can be developed for point-of-care diagnostic testing. Development of a simple, sensitive and rapid method for sorbitol detection is of considerable significance to efficient monitoring of diabetes-associated disorders like cataract, neuropathy, and nephropathy at initial stages. This issue encourages us to write a review that highlights recent advancements in the field of sorbitol detection as no such reports have been published till the date. The first section of this review will be dedicated to the conventional approaches or methods that had been playing a role in detection. The second part focused on the emerging field i.e. biosensors with optical, electrochemical, piezoelectric, etc. approaches for sorbitol detection and the importance of its detection in healthcare application. It is expected that this review will be very helpful for readers to know the different conventional and recent detection techniques for sorbitol at a glance.

Keywords: Nanomaterials, Sorbitol detection, Polyols, Diabetes, Biosensor, Sorbitol dehydrogenase.

« Previous
Graphical Abstract
[1]
Meadows, D. Recent developments with biosensing technology and applications in the pharmaceutical industry. Adv. Drug Deliv. Rev., 1996, 21, 179-189.
[http://dx.doi.org/10.1016/S0169-409X(96)00406-1]
[2]
Iost, R.M.; da Silva, W.C.; Madurro, J.M.; Madurro, A.G.; Ferreira, L.F.; Crespilho, F.N. Recent advances in nano-based electrochemical biosensors: application in diagnosis and monitoring of diseases. Front. Biosci. (Elite Ed.), 2011, 3, 663-689.
[PMID: 21196343]
[3]
Kirsch, J.; Siltanen, C.; Zhou, Q.; Revzin, A.; Simonian, A. Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev., 2013, 42(22), 8733-8768.
[http://dx.doi.org/10.1039/c3cs60141b] [PMID: 23852443]
[4]
Nemane, S.T.; Gholve, S.B.; Bhusnure, O.G.; Mule, S.T.; Ingle, P.V. Biosensors: An emerging technology in pharmaceutical industry. J. Drug Deliv. Ther., 2019, 9(4), 643-647.
[5]
Clark, L.C., Jr; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 1962, 102, 29-45.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[6]
Eggins, B.R. Biosensors, an introduction; John Wiley and Teubner: Hoboken, 1996, p. p212.
[http://dx.doi.org/10.1007/978-3-663-05664-5]
[7]
Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem., 2016, 60(1), 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[8]
Yano, K.; Karube, I. Molecularly imprinted polymers for biosensor applications. Trends Analyt. Chem., 1999, 18(3), 199-204.
[http://dx.doi.org/10.1016/S0165-9936(98)00119-8]
[9]
Newman, J.D.; Setford, S.J. Enzymatic biosensors. Mol. Biotechnol., 2006, 32(3), 249-268.
[http://dx.doi.org/10.1385/MB:32:3:249] [PMID: 16632890]
[10]
Zhai, J.; Cui, H.; Yang, R. DNA based biosensors. Biotechnol. Adv., 1997, 15(1), 43-58.
[http://dx.doi.org/10.1016/S0734-9750(97)00003-7] [PMID: 14539378]
[11]
Kaushik, A.; Yndart, A.; Kumar, S.; Jayant, R.D.; Vashist, A.; Brown, A.N.; Li, C.Z.; Nair, M. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci. Rep., 2018, 8(1), 9700.
[http://dx.doi.org/10.1038/s41598-018-28035-3] [PMID: 29946074]
[12]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[13]
Damborský, P.; Švitel, J. Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[14]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and dna sensors and their applications. Materials (Basel), 2018, 11(3), 448.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[15]
Länge, K.; Rapp, B.E.; Rapp, M. Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem., 2008, 391(5), 1509-1519.
[http://dx.doi.org/10.1007/s00216-008-1911-5] [PMID: 18265962]
[16]
Ramanathan, K.; Danielsson, B. Principles and applications of thermal biosensors. Biosens. Bioelectron., 2001, 16(6), 417-423.
[http://dx.doi.org/10.1016/S0956-5663(01)00124-5] [PMID: 11672656]
[17]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors (Basel), 2008, 8(3), 1400-1458.
[http://dx.doi.org/10.3390/s80314000] [PMID: 27879772]
[18]
Monošík, R.; Streďanský, M.; Šturdík, E. Biosensors — classification, characterization and new trends. Acta Chim. Slov., 2012, 5(1), 109-120.
[http://dx.doi.org/10.2478/v10188-012-0017-z] [PMID: 24061179]
[19]
Muthusankar, E.; Ragupathy, D. Chitosan based nanocomposite biosensors: A recent review. Sens. Lett., 2018, 16(2), 81-91.
[http://dx.doi.org/10.1166/sl.2018.3925]
[20]
Li, J.; Mei, H.; Zheng, W.; Pan, P.; Sun, X.J.; Li, F.; Guo, F.; Zhou, H.M.; Ma, J.Y.; Xu, X.X.; Zheng, Y.F. A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids Surf. B Biointerfaces, 2014, 118, 77-82.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.035] [PMID: 24732396]
[21]
Sengiz, C.; Congur, G.; Eksin, E.; Erdem, A. Multiwalled carbon nanotubes-chitosan modified single-use biosensors for electrochemical monitoring of drug-DNA interactions. Electroanalysis, 2015, 27(8), 1855-1863.
[http://dx.doi.org/10.1002/elan.201500107]
[22]
Wang, Z.; Yu, J.; Gui, R.; Jin, H.; Xia, Y. Carbon nanomaterials-based electrochemical aptasensors. Biosens. Bioelectron., 2016, 79, 136-149.
[http://dx.doi.org/10.1016/j.bios.2015.11.093] [PMID: 26703992]
[23]
Dalkıran, B.; Esra Erden, P.; Kılıç, E. Amperometric biosensors based on carboxylated multiwalled carbon nanotubes-metal oxide nanoparticles-7,7,8,8-tetracyanoquinodimethane composite for the determination of xanthine. Talanta, 2017, 167, 286-295.
[http://dx.doi.org/10.1016/j.talanta.2017.02.021] [PMID: 28340722]
[24]
Kong, D.; Bi, S.; Wang, Z.; Xia, J.; Zhang, F. In situ growth of three-dimensional graphene films for signal-on electrochemical biosensing of various analytes. Anal. Chem., 2016, 88(21), 10667-10674.
[http://dx.doi.org/10.1021/acs.analchem.6b03112] [PMID: 27750421]
[25]
Rani, R.; Sethi, K.; Singh, G. Nanomaterials and their applications in bioimaging.plant Nanobionics; Springer: Berlin, 2019, pp. 429-450.
[http://dx.doi.org/10.1007/978-3-030-16379-2_15 ]
[26]
Lv, S.; Zhang, K.; Zhu, L.; Tang, D.; Niessner, R.; Knopp, D. H2-based electrochemical biosensor with pd nanowires@zif-67 molecular sieve bilayered sensing interface for immunoassay. Anal. Chem., 2019, 91(18), 12055-12062.
[http://dx.doi.org/10.1021/acs.analchem.9b03177] [PMID: 31436433]
[27]
Kumar, S.; Ahlawat, W.; Kumar, R.; Dilbaghi, N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron., 2015, 70, 498-503.
[http://dx.doi.org/10.1016/j.bios.2015.03.062] [PMID: 25899923]
[28]
Islam, M.S.; Sakaguchi, E. Sorbitol-based osmotic diarrhea: possible causes and mechanism of prevention investigated in rats. World J. Gastroenterol., 2006, 12(47), 7635-7641.
[http://dx.doi.org/10.3748/wjg.v12.i47.7635] [PMID: 17171792]
[29]
Balint, T.; Viola, H.; Jozsef, B.; Ferenc, O.; Andras, S. Determination of sorbitol in the presence of high amount of mannitol from biological samples. Period. Polytech. Chem. Eng., 2014, 58(1), 1-6.
[http://dx.doi.org/10.3311/PPch.7048]
[30]
Mathebula, S.D. Polyol pathway: A possible mechanism of diabetes complications in the eye. African Vision and Eye Health, 2015, 74(1), a13.
[http://dx.doi.org/10.4102/aveh.v74i1.13]
[31]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[32]
Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp. Diabetes Res., 2007, 2007, 61038.
[http://dx.doi.org/10.1155/2007/61038] [PMID: 18224243]
[33]
Kinoshita, J.H. Mechanisms initiating cataract formation. Proctor Lecture. Invest. Ophthalmol., 1974, 13(10), 713-724.
[PMID: 4278188]
[34]
Kinoshita, J.H.; Fukushi, S.; Kador, P.; Merola, L.O. Aldose reductase in diabetic complications of the eye. Metabolism, 1979, 28(4)(Suppl. 1), 462-469.
[http://dx.doi.org/10.1016/0026-0495(79)90057-X] [PMID: 45423]
[35]
Asnaghi, V.; Gerhardinger, C.; Hoehn, T.; Adeboje, A.; Lorenzi, M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes, 2003, 52(2), 506-511.
[http://dx.doi.org/10.2337/diabetes.52.2.506] [PMID: 12540628]
[36]
Dagher, Z.; Park, Y.S.; Asnaghi, V.; Hoehn, T.; Gerhardinger, C.; Lorenzi, M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes, 2004, 53(9), 2404-2411.
[http://dx.doi.org/10.2337/diabetes.53.9.2404] [PMID: 15331552]
[37]
Gessei, T.; Arakawa, T.; Kudo, H.; Mitsubayashi, K. A fiber-optic sorbitol biosensor based on NADH fluorescence detection toward rapid diagnosis of diabetic complications. Analyst (Lond.), 2015, 140(18), 6335-6342.
[http://dx.doi.org/10.1039/C4AN01593B] [PMID: 26244794]
[38]
Liu, J.L.; Fan, Q.J.; Zheng, S.L.; Tan, J.; Zhou, J.; Yuan, J.C.; Yang, S.M.; Kong, F.L. [Quantitative determination of 5 active ingredients in different harvest periods of Ligusticum chuanxiong by HPLC]. Zhongguo Zhongyao Zazhi, 2014, 39(9), 1650-1655.
[PMID: 25095378]
[39]
Sumino, M.; Saito, Y.; Ikegami, F.; Namiki, T. A simultaneous determination of principal compounds in tokishakuyakusan by high-performance liquid chromatography with diode array detector. J. Chromatogr. Sci., 2015, 53(2), 320-324.
[http://dx.doi.org/10.1093/chromsci/bmu062] [PMID: 24981981]
[40]
Bonifacio, F.N.; Giocanti, M.; Reynier, J.P.; Lacarelle, B.; Nicolay, A. Development and validation of HPLC method for the determination of Cyclosporin A and its impurities in Neoral capsules and its generic versions. J. Pharm. Biomed. Anal., 2009, 49(2), 540-546.
[http://dx.doi.org/10.1016/j.jpba.2008.11.027] [PMID: 19124213]
[41]
Rohith, T.; Ananda, S.; Netkal, M. A liquid chromatography-uv (LC-UV) method was developed for quantification of six potential impurities in androstanolone active pharmaceutical ingredient. J. Chromat. Separation. Techniq., 2012, 3, 160.
[42]
Ye, N.S.; Gao, T.; Li, J. Hollow fiber-supported graphene oxide molecularly imprinted polymers for the determination of dopamine using HPLC-PDA. Anal. Methods, 2014, 6(18), 7518-7524.
[http://dx.doi.org/10.1039/C4AY01017E]
[43]
Capone, D.L.; Ristic, R.; Pardon, K.H.; Jeffery, D.W. Simple quantitative determination of potent thiols at ultratrace levels in wine by derivatization and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. Anal. Chem., 2015, 87(2), 1226-1231.
[http://dx.doi.org/10.1021/ac503883s] [PMID: 25562625]
[44]
Mostafavi, A.; Abedi, G.; Jamshidi, A.; Afzali, D.; Talebi, M. Development and validation of a HPLC method for the determination of buprenorphine hydrochloride, naloxone hydrochloride and noroxymorphone in a tablet formulation. Talanta, 2009, 77(4), 1415-1419.
[http://dx.doi.org/10.1016/j.talanta.2008.09.024] [PMID: 19084658]
[45]
Alamgir, M.; Khuhawar, M.Y.; Memon, S.Q.; Hayat, A.; Zounr, R.A. HPLC determination of metformin, famotidine and ranitidine by derivatization with benzoin from drugs and biological samples. Pharm. Anal. Acta, 2017, 8(5), 1-7.
[http://dx.doi.org/10.4172/2153-2435.1000546]
[46]
Franceschi, L.; Furlanut, M. A simple and sensitive HPLC method to monitor serum and synovial A simple and sensitive HPLC method to monitor serum and synovial fluid concentrations of ketorolac in reumathologic patients. J. Bioanal. Biomed., 2010, 2, 121-124.
[http://dx.doi.org/10.4172/1948-593X.1000034]
[47]
Chhetri, H.P.; Thapa, P.; Van Schepdael, A. Simple HPLC-UV method for the quantification of metformin in human plasma with one step protein precipitation. Saudi Pharm. J., 2014, 22(5), 483-487.
[http://dx.doi.org/10.1016/j.jsps.2013.12.011] [PMID: 25473337]
[48]
Domingues, D.S.; Pinto, M.A.L.; de Souza, I.D.; Hallak, J.E.C.; Crippa, J.A.D.S.; Queiroz, M.E.C. Determination of drugs in plasma samples by high-performance liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of schizophrenic patients. J. Anal. Toxicol., 2016, 40(1), 28-36.
[PMID: 26333987]
[49]
Ebers, A.; Stroup, S.; Mpagama, S.; Kisonga, R.; Lekule, I.; Liu, J.; Heysell, S. Determination of plasma concentrations of levofloxacin by high performance liquid chromatography for use at a multidrug-resistant tuberculosis hospital in Tanzania. PLoS One, 2017, 12(1) e0170663
[http://dx.doi.org/10.1371/journal.pone.0170663] [PMID: 28141813]
[50]
Khan, M.K.; Khan, M.F. Assessment of bioequivalence of ciprofloxacin in healthy male subjects using HPLC. Pak. J. Pharm. Sci., 2008, 21(3), 299-306.
[PMID: 18614429]
[51]
Rezazadeh, M.; Emami, J. A simple and sensitive HPLC method for analysis of imipramine in human plasma with UV detection and liquid-liquid extraction: Application in bioequivalence studies. Res. Pharm. Sci., 2016, 11(2), 168-176.
[PMID: 27168757]
[52]
Tang, G.Y.; Guo, S.X.; Wu, H.J.; Pan, D.M. The determination sorbitol and carbohydrates in nane fruit by high performance liquid chromatography. Se Pu, 2000, 18(5), 459-461.
[PMID: 12541713]
[53]
Hu, B.; Wang, S.; Xie, F.; Liu, H. Application of high performance liquid chromatography-evaporative light scattering detection in determination of water-soluble sugars and sorbitol in tobacco flavourings and casings. Se Pu, 2012, 30(3), 298-303.
[http://dx.doi.org/10.3724/SP.J.1123.2011.11014] [PMID: 22715697]
[54]
Kwang-Hyok, S.; Ui-Nam, P.; Sarkar, C.; Bhadra, R. A sensitive assay of red blood cell sorbitol level by high performance liquid chromatography: potential for diagnostic evaluation of diabetes. Clin. Chim. Acta, 2005, 354(1-2), 41-47.
[http://dx.doi.org/10.1016/j.cccn.2004.11.006] [PMID: 15748598]
[55]
Canesin, R.; Isique, W.; Buzetti, S.; Souza, J. Derivation method for determining sorbitol in fruit trees. Am. J. Plant Sci., 2014, 5, 3457-3463.
[http://dx.doi.org/10.4236/ajps.2014.523361]
[56]
Schimpf, K.J.; Meek, C.C.; Leff, R.D.; Phelps, D.L.; Schmitz, D.J.; Cordle, C.T. Quantification of myo-inositol, 1,5-anhydro- D-sorbitol, and D-chiro-inositol using high-performance liquid chromatography with electrochemical detection in very small volume clinical samples. Biomed. Chromatogr., 2015, 29(11), 1629-1636.
[http://dx.doi.org/10.1002/bmc.3470] [PMID: 26010453]
[57]
Filip, M.; Vlassa, M.; Coman, V.; Halmagyi, A. Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC-RI optimized method. Food Chem., 2016, 199, 653-659.
[http://dx.doi.org/10.1016/j.foodchem.2015.12.060] [PMID: 26776021]
[58]
Cataldi, T.R.; Margiotta, G.; Zambonin, C.G. Determination of sugars and alditols in food samples by HPAEC with integrated pulsed amperometric detection using alkaline eluents containing barium or strontium ions. Food Chem., 1998, 62(1), 109-115.
[http://dx.doi.org/10.1016/S0308-8146(97)00154-4]
[59]
Hu, J.; Shen, G.; Wen, D. Determination of sorbitol and sugars in tobacco sauce by anion exchange chromatography with integrated pulsed amperometric detection. Se Pu, 2007, 25(3), 451-452.
[PMID: 17679455]
[60]
Simonzadeh, N.; Ronsen, B. An isocratic HPLC method for the determination of sorbitol and glycerol in pharmaceutical formulations. J. Chromatogr. Sci., 2012, 50(7), 644-647.
[http://dx.doi.org/10.1093/chromsci/bms044] [PMID: 22565491]
[61]
Hou, G.; Zhang, R.; Pi, Z.; Song, F.; Liu, Z.; Liu, S. A new method for screening aldose reductase inhibitors using ultrahigh performance liquid chromatography-tandem mass spectrometry. Anal. Methods, 2014, 6(19), 7681-7688.
[http://dx.doi.org/10.1039/C4AY00857J]
[62]
Grembecka, M.; Lebiedzińska, A.; Szefer, P. Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector. Microchem. J., 2014, 117, 77-82.
[http://dx.doi.org/10.1016/j.microc.2014.06.012]
[63]
Hadjikinova, R.; Petkova, N.; Hadjikinov, D.; Denev, P.; Hrusavov, D. Development and validation of hplc-rid method for determination of sugars and polyols. J. Pharm. Sci. Res., 2017, 9(8), 1263-1269.
[64]
Lee, J.; Chung, B.C. Simultaneous measurement of urinary polyols using gas chromatography/mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 831(1-2), 126-131.
[http://dx.doi.org/10.1016/j.jchromb.2005.11.043] [PMID: 16356788]
[65]
Yamamoto, A.; Ohmi, H.; Matsunaga, A.; Ando, K.; Hayakawa, K.; Nishimura, M. Selective determination of D-sorbitol and D-mannitol in foodstuffs by ion chromatography with polarized photometric detection. J. Chromatogr. A, 1998, 804(1-2), 305-309.
[http://dx.doi.org/10.1016/S0021-9673(97)01241-7] [PMID: 9542122]
[66]
Sim, H.J.; Jeong, J.S.; Kwon, H.J.; Kang, T.H.; Park, H.M.; Lee, Y.M.; Kim, S.Y.; Hong, S.P. HPLC with pulsed amperometric detection for sorbitol as a biomarker for diabetic neuropathy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(14-15), 1607-1611.
[http://dx.doi.org/10.1016/j.jchromb.2009.03.041] [PMID: 19372065]
[67]
Butler, O.; Forder, J.; Saunders, J. Analytical protocol for the sensitive determination of mannitol, sorbitol and glucose containing powders in pharmaceutical workplaces by ion chromatography using a pulsed amperometric detector. J. Pharm. Biomed. Anal., 2015, 106, 204-209.
[http://dx.doi.org/10.1016/j.jpba.2014.10.006] [PMID: 25459267]
[68]
Yada, T.; Tabuchi, Y.; Fujii, M.; Koh, T.; Tobimatsu, Y.; Hamasaki, N.; Sekiguchi, Y.; Kato, Y.; Nakamura, M.; Semma, M.; Nishijima, M.; Ito, Y. Determination of xylitol, D-sorbitol and D-mannitol in food by anion-exchange chromatography with pulsed amperometric detection. J. Toxicol. Environ. Health A, 1996, 42(5), 417-421.
[69]
Browne, C.A.; Forbes, T.P.; Sisco, E. Detection and identification of sugar alcohol sweeteners by ion mobility spectrometry. Anal. Methods, 2016, 8(28), 5611-5618.
[http://dx.doi.org/10.1039/C6AY01554A] [PMID: 27574530]
[70]
Quintas, G.; Armenta, S.; Morales-Noe, A.; Garrigues, S.; de la Guardia, M. Simultaneous determination of Folpet and Metalaxyl in pesticide formulations by flow injection Fourier transform infrared spectrometry. Anal. Chim. Acta, 2003, 480(1), 11-21.
[http://dx.doi.org/10.1016/S0003-2670(02)01596-9]
[71]
Khanmohammadi, M.; Armenta, S.; Garrigues, S.; de la Guardia, M. Mid-and near-infrared determination of metribuzin in agrochemicals. Vib. Spectrosc., 2008, 46(2), 82-88.
[http://dx.doi.org/10.1016/j.vibspec.2007.10.005]
[72]
Robaina, N.F.; de Paula, C.E.R.; Brum, D.M.; Guardia, M.; Garrigues, S.; Cassella, R.J. Novel approach for the determination of azithromycin in pharmaceutical formulations by Fourier transform infrared spectroscopy in film-through transmission mode. Microchem. J., 2013, 110, 301-307.
[http://dx.doi.org/10.1016/j.microc.2013.04.015]
[73]
Renner, F.; Schmitz, A.; Gehring, H. Rapid and sensitive gas chromatography-mass spectroscopy method for the detection of mannitol and sorbitol in serum samples. Clin. Chem., 1998, 44(4), 886-887.
[http://dx.doi.org/10.1093/clinchem/44.4.886] [PMID: 9554506]
[74]
Macauley-Patrick, S.; Arnold, S.A.; McCarthy, B.; Harvey, L.M.; McNeil, B. Attenuated total reflectance Fourier transform mid-infrared spectroscopic quantification of sorbitol and sorbose during a Gluconobacter biotransformation process. Biotechnol. Lett., 2003, 25(3), 257-260.
[http://dx.doi.org/10.1023/A:1022351001284] [PMID: 12882581]
[75]
de Castro, Eda.S.; Cassella, R.J. Direct determination of sorbitol and sodium glutamate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) in the thermostabilizer employed in the production of yellow-fever vaccine. Talanta, 2016, 152, 33-38.
[http://dx.doi.org/10.1016/j.talanta.2016.01.054] [PMID: 26992492]
[76]
Liang, H.R.; Takagaki, T.; Foltz, R.L.; Bennett, P. Quantitative determination of endogenous sorbitol and fructose in human nerve tissues by atmospheric-pressure chemical ionization liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19(16), 2284-2294.
[http://dx.doi.org/10.1002/rcm.2055] [PMID: 16034846]
[77]
Guttman, A. Analysis of monosaccharide composition by capillary electrophoresis. J. Chromatogr. A, 1997, 763(1-2), 271-277.
[http://dx.doi.org/10.1016/S0021-9673(96)00750-9] [PMID: 9129325]
[78]
Pospíšilová, M.; Polášek, M.; Procházka, J. Separation and determination of pharmaceutically important polyols in dosage forms by capillary isotachophoresis. J. Chromatogr. A, 1997, 772(1-2), 277-282.
[http://dx.doi.org/10.1016/S0021-9673(96)00862-X]
[79]
Martínez, M.C.; Rodríguez, D.M.; Guillén, S.D.; Barroso, C.G. Analysis of low molecular weight carbohydrates in food and beverages: a review. Chromatographia, 2004, 59, 15-30.
[80]
Pospísilová, M.; Polásek, M.; Jokl, V. Separation and determination of sorbitol and xylitol in multi-component pharmaceutical formulations by capillary isotachophoresis. J. Pharm. Biomed. Anal., 1998, 17(3), 387-392.
[http://dx.doi.org/10.1016/S0731-7085(98)00046-6] [PMID: 9656148]
[81]
Pospísilová, M.; Polásek, M.; Safra, J.; Petriska, I. Determination of mannitol and sorbitol in infusion solutions by capillary zone electrophoresis using on-column complexation with borate and indirect spectrophotometric detection. J. Chromatogr. A, 2007, 1143(1-2), 258-263.
[http://dx.doi.org/10.1016/j.chroma.2007.01.029] [PMID: 17266976]
[82]
Bai, J.G.; Song, L.H.; Zhou, W.H. Determination of xylitol and sorbitol in sugar-free chewing gums by miniaturized capillary electrophoresis system with amperometric detection. Chin. J. Anal. Chem., 2007, 35, 1661-1664.
[83]
Ge, S.L.; Wang, H.; Wang, Z.F.; Cheng, S.; Wang, Q.J.; He, P.G.; Fang, Y.Z. Sensitive measurement of polyols in urine by capillary zone electrophoresis coupled with amperometric detection using on-column complexation with borate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 915-916, 39-45.
[http://dx.doi.org/10.1016/j.jchromb.2012.12.017] [PMID: 23328250]
[84]
Coelho, A.G.; de Jesus, D.P. A simple method for determination of erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolates by capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis, 2016, 37(22), 2986-2991.
[http://dx.doi.org/10.1002/elps.201600263] [PMID: 27520494]
[85]
El-Kabbani, O.; Darmanin, C.; Chung, R.P. Sorbitol dehydrogenase: structure, function and ligand design. Curr. Med. Chem., 2004, 11(4), 465-476.
[http://dx.doi.org/10.2174/0929867043455927] [PMID: 14965227]
[86]
Jörnvall, H.; Höög, J.O.; von Bahr-Lindström, H.; Vallee, B.L. Mammalian alcohol dehydrogenases of separate classes: intermediates between different enzymes and intraclass isozymes. Proc. Natl. Acad. Sci. USA, 1987, 84(9), 2580-2584.
[http://dx.doi.org/10.1073/pnas.84.9.2580] [PMID: 3472225]
[87]
Schneider, K.; Giffhorn, F. Sorbitol dehydrogenase from Pseudomonas sp.: Purification, characterization and application to quantitative determination of sorbitol. Enzyme Microb. Technol., 1991, 13, 332-337.
[http://dx.doi.org/10.1016/0141-0229(91)90153-2]
[88]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[89]
Adcock, L.H. The determination of sorbitol. Analyst (Lond.), 1957, 82, 427-434.
[http://dx.doi.org/10.1039/an9578200427]
[90]
King, T.E.; Mann, T. Sorbitol Metabolism in Spermatozoa. Proc. R. Soc. Lond. B Biol. Sci., 1959, 151(943), 226-243.
[http://dx.doi.org/10.1098/rspb.1959.0061]
[91]
Huebner, G.H.; Huebner, G.I.; Weiss, M. A simple and rapid method for the determination of D-sorbitol in plasma using the Cobas Mira S. Ther. Drug Monit., 1996, 18(5), 620-623.
[http://dx.doi.org/10.1097/00007691-199610000-00016] [PMID: 8885129]
[92]
Fukuda, T.; Ishida, S.; Nakagama, T.; Koike, S.; Uchiyama, K. Spectrophotometric determination of sugar alcohols utilizing a reaction with Titanium Alkoxides. Bunseki Kagaku, 2005, 54(10), 969-973.
[http://dx.doi.org/10.2116/bunsekikagaku.54.969]
[93]
Wiesner, I.S.; Rawnsley, H.M.; Brooks, F.P.; Senior, J.R. Sorbitol dehydrogenase in the diagnosis of liver disease. Am. J. Dig. Dis., 1965, 10, 147-151.
[http://dx.doi.org/10.1007/BF02236665] [PMID: 14258250]
[94]
Cameron, N.E.; Cotter, M.A.; Basso, M.; Hohman, T.C. Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia, 1997, 40(3), 271-281.
[http://dx.doi.org/10.1007/s001250050674] [PMID: 9084964]
[95]
Preston, G.M.; Calle, R.A. Elevated serum sorbitol and not Fructose in Type 2 diabetic patients. Biomark. Insights, 2010, 5, 33-38.
[http://dx.doi.org/10.4137/BMI.S4530] [PMID: 20520742]
[96]
Nagasaka, Y.; Fujii, S.; Kaneko, T. Human erythrocyte sorbitol metabolism and the role of sorbitol dehydrogenase. Diabetologia, 1988, 31(10), 766-770.
[http://dx.doi.org/10.1007/BF00274781] [PMID: 3240839]
[97]
Obrosova, I.G.; Fathallah, L.; Lang, H.J.; Greene, D.A. Evaluation of a sorbitol dehydrogenase inhibitor on diabetic peripheral nerve metabolism: a prevention study. Diabetologia, 1999, 42(10), 1187-1194.
[http://dx.doi.org/10.1007/s001250051290] [PMID: 10525658]
[98]
Pollreisz, A.; Schmidt-Erfurth, U. Diabetic cataract-pathogenesis, epidemiology and treatment. J. Ophthalmol., 2010, 2010 608751
[http://dx.doi.org/10.1155/2010/608751] [PMID: 20634936]
[99]
Vaca, G.; Zúñiga, P.; Medina, C.; Alonso, R.; González-Quiroga, G.; Ortíz-De-Luna, R.I.; Cantú, J.M. A fluorimetric method for red blood cell sorbitol dehydrogenase activity. J. Clin. Pathol., 1983, 36(6), 697-700.
[http://dx.doi.org/10.1136/jcp.36.6.697] [PMID: 6853734]
[100]
Liao, J.C.; Rountree, M.; Good, R.; Hook, J.; Punko, C. Determination of D-sorbitol in human erythrocytes by an improved enzymatic method with fluorometric detection. Clin. Chem., 1988, 34(11), 2327-2330.
[http://dx.doi.org/10.1093/clinchem/34.11.2327] [PMID: 3052927]
[101]
Shinohara, R.; Ohta, Y.; Yamauchi, M.; Ishiguro, I. Improved fluorometric enzymatic sorbitol assay in human blood. Clin. Chim. Acta, 1998, 273(2), 171-184.
[http://dx.doi.org/10.1016/S0009-8981(98)00036-9] [PMID: 9657347]
[102]
Umeda, M.; Otsuka, Y.; Ii, T.; Matsuura, T.; Shibati, H.; Ota, H.; Sakurabayashi, I. Determination of D-sorbitol in human erythrocytes by an enzymatic fluorometric method with an improved deproteinization procedure. Ann. Clin. Biochem., 2001, 38(Pt 6), 701-707.
[http://dx.doi.org/10.1258/0004563011900920] [PMID: 11732654]
[103]
Lindstad, R.I.; Köll, P.; McKinley-McKee, J.S. Substrate specificity of sheep liver sorbitol dehydrogenase. Biochem. J., 1998, 330(Pt 1), 479-487.
[http://dx.doi.org/10.1042/bj3300479] [PMID: 9461546]
[104]
Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J.R.; Geddes, C.D. Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol., 2005, 16(1), 55-62.
[http://dx.doi.org/10.1016/j.copbio.2005.01.001] [PMID: 15722016]
[105]
Metkar, S.K.; Girigoswami, K. Diagnostic biosensors in medicine–a review. Biocatal. Agric. Biotechnol., 2019, 17, 271-283.
[http://dx.doi.org/10.1016/j.bcab.2018.11.029]
[106]
Gautier, S.M.; Blum, L.J.; Coulet, P.R. Fibre-optic biosensor based on luminescence and immobilized enzymes: microdetermination of sorbitol, ethanol and oxaloacetate. J. Biolumin. Chemilumin., 1990, 5(1), 57-63.
[http://dx.doi.org/10.1002/bio.1170050112] [PMID: 2316395]
[107]
Michel, P.E.; Gautier, S.M.; Blum, L.J. A high-performance bioluminescent tri-enzymatic sensor for D-sorbitol based on a novel approach of the sensing layer design. Enzyme Microb. Technol., 1997, 21(2), 108-116.
[http://dx.doi.org/10.1016/S0141-0229(96)00233-5]
[108]
Niu, W.; Kong, H.; Wang, H.; Zhang, Y.; Zhang, S.; Zhang, X. A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners. Anal. Bioanal. Chem., 2012, 402(1), 389-395.
[http://dx.doi.org/10.1007/s00216-011-5305-8] [PMID: 21850423]
[109]
Kant, R.; Tabassum, R.; Gupta, B.D. A highly sensitive and distinctly selective d-sorbitol biosensor using SDH enzyme entrapped Ta2O5 nanoflowers assembly coupled with fiber optic SPR. Sens. Actuators B Chem., 2017, 242, 810-817.
[http://dx.doi.org/10.1016/j.snb.2016.09.178]
[110]
Sauerbrey, G.Z. The use of quarts oscillators for weighing thin layers and for microweighing. Zeitschrift für Physik, 1959, 155, 206-222.
[http://dx.doi.org/10.1007/BF01337937]
[111]
Frasco, M.F.; Truta, L.A.; Sales, M.G.F.; Moreira, F.T. Imprinting technology in electrochemical biomimetic sensors. Sensors (Basel), 2017, 17(3), 523.
[http://dx.doi.org/10.3390/s17030523] [PMID: 28272314]
[112]
Feng, L.; Liu, Y.; Tan, Y.; Hu, J. Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers. Biosens. Bioelectron., 2004, 19(11), 1513-1519.
[http://dx.doi.org/10.1016/j.bios.2003.12.007] [PMID: 15093224]
[113]
Andersson, H.S.; Karlsson, J.G.; Piletsky, S.A.; Koch-Schmidt, A.C.; Mosbach, K.; Nicholls, I.A. Study of the nature of recognition in molecularly imprinted polymers. II. Influence of monomer-template ratio and sample loads on retention and selectivity. J. Chromatogr. A, 1999, 848, 39-49.
[http://dx.doi.org/10.1016/S0021-9673(99)00483-5]
[114]
Kriz, D.; Ramstrom, O.; Mosbach, K. Peer reviewed: molecular imprinting: new possibilities for sensor technology. Anal. Chem., 1997, 69(11), 345A-349A.
[http://dx.doi.org/10.1021/ac971657e]
[115]
Scorrano, S.; Mergola, L.; Del Sole, R.; Vasapollo, G. Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers. Int. J. Mol. Sci., 2011, 12(3), 1735-1743.
[http://dx.doi.org/10.3390/ijms12031735] [PMID: 21673919]
[116]
Singh, L.K.; Singh, M.; Singh, M. Biopolymeric receptor for peptide recognition by molecular imprinting approach--synthesis, characterization and application. Mater. Sci. Eng. C, 2014, 45, 383-394.
[http://dx.doi.org/10.1016/j.msec.2014.08.073] [PMID: 25491843]
[117]
Whitcombe, M.J.; Chianella, I.; Larcombe, L.; Piletsky, S.A.; Noble, J.; Porter, R.; Horgan, A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev., 2011, 40(3), 1547-1571.
[http://dx.doi.org/10.1039/C0CS00049C] [PMID: 21132204]
[118]
Moreira, F.T.; Sharma, S.; Dutra, R.A.; Noronha, J.P.; Cass, A.E.; Sales, M.G.F. Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: application to myoglobin detection. Biosens. Bioelectron., 2013, 45, 237-244.
[http://dx.doi.org/10.1016/j.bios.2013.02.012] [PMID: 23500370]
[119]
Tsunemori, H.; Araki, K.; Uezu, K.; Goto, M.; Furusaki, S. Surface imprinting polymers for the recognition of nucleotides. Bioseparation, 2001, 10(6), 315-321.
[http://dx.doi.org/10.1023/A:1021541803571] [PMID: 12549875]
[120]
Moreira, F.T.; Kamel, A.H.; Guerreiro, J.R.; Sales, M.G. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline. Biosens. Bioelectron., 2010, 26(2), 566-574.
[http://dx.doi.org/10.1016/j.bios.2010.07.036] [PMID: 20688507]
[121]
Uzuriaga-Sánchez, R.J.; Khan, S.; Wong, A.; Picasso, G.; Pividori, M.I.; Sotomayor, M.D.P.T. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. Food Chem., 2016, 190, 460-467.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.129] [PMID: 26212997]
[122]
Shen, X.; Zhu, L.; Wang, N.; Ye, L.; Tang, H. Molecular imprinting for removing highly toxic organic pollutants. Chem. Commun. (Camb.), 2012, 48(6), 788-798.
[http://dx.doi.org/10.1039/C2CC14654A] [PMID: 22139426]
[123]
Luliński, P. Molecularly imprinted polymers as the future drug delivery devices. Acta Pol. Pharm., 2013, 70(4), 601-609.
[PMID: 23923384]
[124]
Sharma, P.S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem., 2012, 402(10), 3177-3204.
[http://dx.doi.org/10.1007/s00216-011-5696-6] [PMID: 22302165]
[125]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[PMID: 11261847]
[126]
Abdulbari, H.A.; Basheer, E.A. Electrochemical biosensors: electrode development, materials, design, and fabrication. Chem. Bio. Eng. Reviews, 2017, 4, 92-105.
[http://dx.doi.org/10.1002/cben.201600009]
[127]
Ezhilan, M.; Gumpu, M.; Ramachandra, B.; Nesakumar, N.; Babu, K.; Krishnan, U.; Rayappan, J.B.B. Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples. Sens. Actuators B Chem., 2017, 238, 1283-1292.
[http://dx.doi.org/10.1016/j.snb.2016.09.100]
[128]
Gao, Z.D.; Qu, Y.; Li, T.; Shrestha, N.K.; Song, Y.Y. Development of amperometric glucose biosensor based on Prussian Blue functionlized TiO2 nanotube arrays. Sci. Rep., 2014, 4, 6891.
[http://dx.doi.org/10.1038/srep06891] [PMID: 25367086]
[129]
Marchenko, S.V.; Kucherenko, I.S.; Hereshko, A.N.; Panasiuk, I.V.; Soldatkin, O.O.; El’skaya, A.V.; Soldatkin, A.P. Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate. Sens. Actuators B Chem., 2015, 207, 981-986.
[http://dx.doi.org/10.1016/j.snb.2014.06.136]
[130]
Stradiotto, N.R.; Yamanaka, H.; Zanoni, M.V.B. Electrochemical sensors: a powerful tool in analytical chemistry. J. Braz. Chem. Soc., 2003, 14(2), 159-173.
[http://dx.doi.org/10.1590/S0103-50532003000200003]
[131]
Saidman, S.B.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Amperometric detection of D-sorbitol with NAD+- D-sorbitol dehydrogenase modified carbon paste electrode. Anal. Chim. Acta, 2000, 424(1), 45-50.
[http://dx.doi.org/10.1016/S0003-2670(00)01140-5]
[132]
Veloso, A.J.; Cheng, X.R.; Kerman, K. Electrochemical biosensors for medical applications; Biosensors for Medical Applications, 2012, pp. 3-40.
[http://dx.doi.org/10.1533/9780857097187.1.3]
[133]
Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev., 2013, 113(7), 5458-5479.
[http://dx.doi.org/10.1021/cr300325r] [PMID: 23557137]
[134]
Trojanowicz, M.; Kołacińska, K. Recent advances in flow injection analysis. Analyst (Lond.), 2016, 141(7), 2085-2139.
[http://dx.doi.org/10.1039/C5AN02522B] [PMID: 26906258]
[135]
Keay, P.J.; Wang, Y. Applications of flow injection analysis to analytical biotechnology. Trends Biotechnol., 1997, 15(2), 76-81.
[http://dx.doi.org/10.1016/S0167-7799(97)84207-2]
[136]
Gao, Q.; Wang, W.; Ma, Y.; Yang, X. Electrooxidative polymerization of phenothiazine derivatives on screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Talanta, 2004, 62(3), 477-482.
[http://dx.doi.org/10.1016/j.talanta.2003.08.017] [PMID: 18969321]
[137]
Hasebe, Y.; Wang, Y.; Fukuoka, K. Electropolymerized poly(Toluidine blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis. J. Environ. Sci. (China), 2011, 23(6), 1050-1056.
[http://dx.doi.org/10.1016/S1001-0742(10)60513-X] [PMID: 22066231]
[138]
Filip, J.; Sefčovičová, J.; Tomčík, P.; Gemeiner, P.; Tkac, J. A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta, 2011, 84(2), 355-361.
[http://dx.doi.org/10.1016/j.talanta.2011.01.004] [PMID: 21376957]
[139]
Zhang, M.; Smith, A.; Gorski, W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem., 2004, 76(17), 5045-5050.
[http://dx.doi.org/10.1021/ac049519u] [PMID: 15373440]
[140]
Tsai, Y.C.; Chen, S.Y.; Liaw, H.W. Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sens. Actuators B Chem., 2007, 125(2), 474-481.
[http://dx.doi.org/10.1016/j.snb.2007.02.052]
[141]
Arvinte, A.; Rotariu, L.; Bala, C. Amperometric low-potential detection of malic acid using single- wall carbon nanotubes based electrodes. Sensors (Basel), 2008, 8(3), 1497-1507.
[http://dx.doi.org/10.3390/s8031497] [PMID: 27879776]
[142]
Šefčovičová, J.; Filip, J.; Tomčík, P.; Gemeiner, P.; Bučko, M.; Magdolen, P.; Tkac, J. A biopolymer-based carbon nanotube interface integrated with a redox shuttle and a D-sorbitol dehydrogenase for robust monitoring of D-sorbitol’. Mikrochim. Acta, 2011, 175(1–2), 21-30.
[http://dx.doi.org/10.1007/s00604-011-0641-0]
[143]
Svitel, J.; Tkác, J.; Vostiar, I.; Navrátil, M.; Stefuca, V.; Bucko, M.; Gemeiner, P. Gluconobacter in biosensors: applications of whole cells and enzymes isolated from Gluconobacter and Acetobacter to biosensor construction. Biotechnol. Lett., 2006, 28(24), 2003-2010.
[http://dx.doi.org/10.1007/s10529-006-9195-3] [PMID: 17072528]
[144]
De Muynck, C.; Pereira, C.S.S.; Naessens, M.; Parmentier, S.; Soetaert, W.; Vandamme, E.J. The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications. Crit. Rev. Biotechnol., 2007, 27(3), 147-171.
[http://dx.doi.org/10.1080/07388550701503584] [PMID: 17849259]
[145]
Freire, R.S.; Mello, A.P.C.; Lucilene, D.M.; Lauro, T.K. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J. Braz. Chem. Soc., 2003, 14(2), 230-243.
[http://dx.doi.org/10.1590/S0103-50532003000200008]
[146]
Wu, Y.; Hu, S. Biosensors based on direct electron transfer in redox proteins. Mikrochim. Acta, 2007, 159(1-2), 1-17.
[http://dx.doi.org/10.1007/s00604-007-0749-4]
[147]
Bollella, P.; Gorton, L.; Antiochia, R. Direct electron transfer of dehydrogenases for development of 3rd generation biosensors and enzymatic fuel cells. Sensors (Basel), 2018, 18(5) E 1319.
[148]
Wang, Z.; Etienne, M.; Quilès, F.; Kohring, G.W.; Walcarius, A. Durable cofactor immobilization in sol-gel bio-composite thin films for reagentless biosensors and bioreactors using dehydrogenases. Biosens. Bioelectron., 2012, 32(1), 111-117.
[http://dx.doi.org/10.1016/j.bios.2011.11.043] [PMID: 22197100]
[149]
Wang, Z.; Etienne, M.; Urbanova, V.; Kohring, G.W.; Walcarius, A. Reagentless D-sorbitol biosensor based on D-sorbitol dehydrogenase immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite. Anal. Bioanal. Chem., 2013, 405(11), 3899-3906.
[http://dx.doi.org/10.1007/s00216-013-6820-6] [PMID: 23462979]
[150]
Dilgin, D.G.; Gligor, D.; Gökçel, H.İ.; Dursun, Z.; Dilgin, Y. Photoelectrocatalytic oxidation of NADH in a flow injection analysis system using a poly-hematoxylin modified glassy carbon electrode. Biosens. Bioelectron., 2010, 26(2), 411-417.
[http://dx.doi.org/10.1016/j.bios.2010.07.120] [PMID: 20739173]
[151]
Wang, J.; Musameh, M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem., 2003, 75(9), 2075-2079.
[http://dx.doi.org/10.1021/ac030007+] [PMID: 12720343]
[152]
Yáñez-Sedeño, P.; Pingarrón, J.M.; Riu, J.; Rius, F.X. Electrochemical sensing based on carbon nanotubes. Trends Analyt. Chem., 2010, 29(9), 939-953.
[http://dx.doi.org/10.1016/j.trac.2010.06.006]
[153]
Kumar, S.; Rani, R.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev., 2017, 46(1), 158-196.
[http://dx.doi.org/10.1039/C6CS00517A] [PMID: 27841412]
[154]
Vashist, S.K.; Zheng, D.; Al-Rubeaan, K.; Luong, J.H.; Sheu, F.S. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv., 2011, 29(2), 169-188.
[http://dx.doi.org/10.1016/j.biotechadv.2010.10.002] [PMID: 21034805]
[155]
Lawrence, N.S.; Wang, J. Chemical adsorption of phenothiazine dyes onto carbon nanotubes: Toward the low potential detection of NADH. Electrochem. Commun., 2006, 8(1), 71-76.
[http://dx.doi.org/10.1016/j.elecom.2005.10.026]
[156]
Maroneze, C.M.; Arenas, L.T.; Luz, R.C.; Benvenutti, E.V.; Landers, R.; Gushikem, Y. Meldola blue immobilized on a new SiO2/TiO2/graphite composite for electrocatalytic oxidation of NADH. Electrochim. Acta, 2008, 53(12), 4167-4175.
[http://dx.doi.org/10.1016/j.electacta.2007.12.072]
[157]
Lin, Y.; Zhu, N.; Yu, P.; Su, L.; Mao, L. Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion. Anal. Chem., 2009, 81(6), 2067-2074.
[http://dx.doi.org/10.1021/ac801946s] [PMID: 19281258]
[158]
Lu, X.; Cheng, H.; Huang, P.; Yang, L.; Yu, P.; Mao, L. Hybridization of bioelectrochemically functional infinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive and selective in vivo electrochemical monitoring. Anal. Chem., 2013, 85(8), 4007-4013.
[http://dx.doi.org/10.1021/ac303743a] [PMID: 23496088]
[159]
Rhim, J.W.; Hong, S.I.; Park, H.M.; Ng, P.K. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem., 2006, 54(16), 5814-5822.
[http://dx.doi.org/10.1021/jf060658h] [PMID: 16881682]
[160]
Moura, D.; Mano, J.F.; Paiva, M.C.; Alves, N.M. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Sci. Technol. Adv. Mater., 2016, 17(1), 626-643.
[http://dx.doi.org/10.1080/14686996.2016.1229104] [PMID: 27877909]
[161]
Tsai, Y.C.; Li, S.C.; Chen, J.M. Cast thin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir, 2005, 21(8), 3653-3658.
[http://dx.doi.org/10.1021/la0470535] [PMID: 15807616]
[162]
Radoi, A.; Compagnone, D.; Batic, M.; Klincar, J.; Gorton, L.; Palleschi, G. NADH screen-printed electrodes modified with zirconium phosphate, Meldola blue, and Reinecke salt. Application to the detection of glycerol by FIA. Anal. Bioanal. Chem., 2007, 387(3), 1049-1058.
[http://dx.doi.org/10.1007/s00216-006-0975-3] [PMID: 17203252]
[163]
Rattanawaleedirojn, P.; Saengkiettiyut, K.; Boonyongmaneerat, Y.; Sangsuk, S.; Promphet, N.; Rodthongkum, N. TiO2 sol-embedded in electroless Ni–P coating: a novel approach for an ultra-sensitive sorbitol sensor. RSC Advances, 2016, 6, 69261-69269.
[http://dx.doi.org/10.1039/C6RA05090E]
[164]
Mao, Y.; Tian, S.; Gong, S.; Qin, Y.; Han, J.; Deng, S. A broad-spectrum sweet taste sensor based on Ni (OH) 2/Ni electrode. Sensors (Basel), 2018, 18(9), 2758.
[http://dx.doi.org/10.3390/s18092758]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy