Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Chemical Metabolism of Xenobiotics by Gut Microbiota

Author(s): Radislav Nakov* and Tsvetelina Velikova

Volume 21, Issue 4, 2020

Page: [260 - 269] Pages: 10

DOI: 10.2174/1389200221666200303113830

Price: $65

conference banner
Abstract

Among the gut microbiota’s newly explored roles in human biology is the ability to modify the chemical structures of foreign compounds (xenobiotics). A growing body of evidence has now provided sufficient acumen on the role of the gut microbiota on xenobiotic metabolism, which could have an intense impact on the therapy for various diseases in the future. Gut microbial xenobiotic metabolites have altered bioavailability, bioactivity and toxicity and can intervene with the actions of human xenobiotic-metabolizing enzymes to affect the destiny of other ingested molecules. These modifications are diverse and could lead to physiologically important consequences.

In the current manuscript we aim to review the data currently available on how the gut microbiota directly modifies drugs, dietary compounds, chemicals, pollutants, pesticides and herbal supplements.

Keywords: Xenobiotics, gut microbiota, drug metabolism, pollutants, bioavailability, bioactivity, toxicity.

[1]
Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3), 337-340.
[http://dx.doi.org/10.1016/j.cell.2016.01.013] [PMID: 26824647]
[2]
Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[3]
McIlroy, J.; Ianiro, G.; Mukhopadhya, I.; Hansen, R.; Hold, G.L. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment. Pharmacol. Ther., 2018, 47(1), 26-42.
[http://dx.doi.org/10.1111/apt.14384] [PMID: 29034981]
[4]
Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Irritable bowel syndrome: a microbiome-gut-brain axis disorder? World J. Gastroenterol., 2014, 20(39), 14105-14125.
[http://dx.doi.org/10.3748/wjg.v20.i39.14105] [PMID: 25339800]
[5]
Bisgaard, H.; Li, N.; Bonnelykke, K.; Chawes, B.L.; Skov, T.; Paludan-Müller, G.; Stokholm, J.; Smith, B.; Krogfelt, K.A. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin.Immunol.,, 2011,, 128,, 646-- 652.e1-5..
[http://dx.doi.org/10.1016/j.jaci.2011.04.060]
[6]
Karlsson, F.; Tremaroli, V.; Nielsen, J.; Bäckhed, F. Assessing the human gut microbiota in metabolic diseases. Diabetes, 2013, 62(10), 3341-3349.
[http://dx.doi.org/10.2337/db13-0844] [PMID: 24065795]
[7]
Danielsson, H.; Gustafsson, B. On serum-cholesterol levels and neutral fecal sterols in germ-free rats; bile acids and steroids 59. Arch. Biochem. Biophys., 1959, 83, 482-485.
[http://dx.doi.org/10.1016/0003-9861(59)90056-6] [PMID: 13813997]
[8]
Saad, R.; Rizkallah, M.R.; Aziz, R.K. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog., 2012, 4(1), 16.
[http://dx.doi.org/10.1186/1757-4749-4-16] [PMID: 23194438]
[9]
Joh, E.H.; Kim, D.H. A sensitive liquid chromatography-electrospray tandem mass spectrometric method for lancemaside A and its metabolites in plasma and a pharmacokinetic study in mice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(21), 1875-1880.
[http://dx.doi.org/10.1016/j.jchromb.2010.05.003] [PMID: 20570220]
[10]
Tralau, T.; Sowada, J.; Luch, A. Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology? Expert Opin. Drug Metab. Toxicol., 2015, 11(3), 411-425.
[http://dx.doi.org/10.1517/17425255.2015.990437] [PMID: 25476418]
[11]
Kim, D.H. Gut microbiota-mediated drug-antibiotic interactions. Drug Metab. Dispos., 2015, 43(10), 1581-1589.
[http://dx.doi.org/10.1124/dmd.115.063867] [PMID: 25926432]
[12]
Shetty, S.A.; Marathe, N.P.; Shouche, Y.S. Opportunities and challenges for gut microbiome studies in the Indian population. Microbiome, 2013, 1(1), 24.
[http://dx.doi.org/10.1186/2049-2618-1-24] [PMID: 24451035]
[13]
Tilg, H.; Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest., 2011, 121(6), 2126-2132.
[http://dx.doi.org/10.1172/JCI58109] [PMID: 21633181]
[14]
Ramakrishna, B.S. Role of the gut microbiota in human nutrition and metabolism. J. Gastroenterol. Hepatol., 2013, 28(Suppl. 4), 9-17.
[http://dx.doi.org/10.1111/jgh.12294] [PMID: 24251697]
[15]
Lu, K.; Mahbub, R.; Fox, J.G. Xenobiotics: interaction with the intestinal microflora. ILAR J., 2015, 56(2), 218-227.
[http://dx.doi.org/10.1093/ilar/ilv018] [PMID: 26323631]
[16]
Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol., 2016, 14(8)e1002533
[http://dx.doi.org/10.1371/journal.pbio.1002533] [PMID: 27541692]
[17]
Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science, 2017, 356(6344)eaag2770
[http://dx.doi.org/10.1126/science.aag2770] [PMID: 28642381]
[18]
Maurice, C.F.; Haiser, H.J.; Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell, 2013, 152(1-2), 39-50.
[http://dx.doi.org/10.1016/j.cell.2012.10.052] [PMID: 23332745]
[19]
Robinson, C.J.; Young, V.B. Antibiotic administration alters the community structure of the gastrointestinal micobiota. Gut Microbes, 2010, 1(4), 279-284.
[http://dx.doi.org/10.4161/gmic.1.4.12614] [PMID: 20953272]
[20]
Collins, S.L.; Patterson, A.D. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm. Sin. B,, 2020,, 10((1),), 19-- 32. [Journal Pre-proof.]..
[http://dx.doi.org/10.1016/j.apsb.2019.12.001] [PMID: 31998605]
[21]
El Kaoutari, A.; Armougom, F.; Gordon, J.I.; Raoult, D.; Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol., 2013, 11(7), 497-504.
[http://dx.doi.org/10.1038/nrmicro3050] [PMID: 23748339]
[22]
He, X.; Marco, M.L.; Slupsky, C.M. Emerging aspects of food and nutrition on gut microbiota. J. Agric. Food Chem., 2013, 61(40), 9559-9574.
[http://dx.doi.org/10.1021/jf4029046] [PMID: 24028159]
[23]
Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol., 2012, 10(5), 323-335.
[http://dx.doi.org/10.1038/nrmicro2746] [PMID: 22491358]
[24]
Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6), 1332-1345.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[25]
Zhao, J.; Zhang, X.; Liu, H.; Brown, M.A.; Qiao, S. Dietary protein and gut microbiota composition and function. Curr. Protein Pept. Sci., 2019, 20(2), 145-154.
[http://dx.doi.org/10.2174/1389203719666180514145437] [PMID: 29756574]
[26]
Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tomé, D. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res., 2013, 68(1), 95-107.
[http://dx.doi.org/10.1016/j.phrs.2012.11.005] [PMID: 23183532]
[27]
Bishu, S. Sensing of nutrients and microbes in the gut. Curr. Opin. Gastroenterol., 2016, 32(2), 86-95.
[http://dx.doi.org/10.1097/MOG.0000000000000246] [PMID: 26836123]
[28]
Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res., 2010, 61(3), 219-225.
[http://dx.doi.org/10.1016/j.phrs.2009.11.001] [PMID: 19914380]
[29]
Grohmann, U.; Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev., 2010, 236, 243-264.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00915.x] [PMID: 20636821]
[30]
Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr., 1998, 128(3), 606-614.
[http://dx.doi.org/10.1093/jn/128.3.606] [PMID: 9482771]
[31]
Cani, P.D.; Everard, A.; Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol., 2013, 13(6), 935-940.
[http://dx.doi.org/10.1016/j.coph.2013.09.008] [PMID: 24075718]
[32]
Pridmore, R.D.; Berger, B.; Desiere, F.; Vilanova, D.; Barretto, C.; Pittet, A.C.; Zwahlen, M.C.; Rouvet, M.; Altermann, E.; Barrangou, R.; Mollet, B.; Mercenier, A.; Klaenhammer, T.; Arigoni, F.; Schell, M.A. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2512-2517.
[http://dx.doi.org/10.1073/pnas.0307327101] [PMID: 14983040]
[33]
Gaudichon, C.; Mahé, S.; Benamouzig, R.; Luengo, C.; Fouillet, H.; Daré, S.; Van Oycke, M.; Ferrière, F.; Rautureau, J.; Tomé, D. Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans. J. Nutr., 1999, 129(4), 890-895.
[http://dx.doi.org/10.1093/jn/129.4.890] [PMID: 10203566]
[34]
Bos, C.; Juillet, B.; Fouillet, H.; Turlan, L.; Daré, S.; Luengo, C.; N’tounda, R.; Benamouzig, R.; Gausserès, N.; Tomé, D.; Gaudichon, C. Postprandial metabolic utilization of wheat protein in humans. Am. J. Clin. Nutr., 2005, 81(1), 87-94.
[http://dx.doi.org/10.1093/ajcn/81.1.87] [PMID: 15640465]
[35]
Evenepoel, P.; Claus, D.; Geypens, B.; Hiele, M.; Geboes, K.; Rutgeerts, P.; Ghoos, Y. Amount and fate of egg protein escaping assimilation in the small intestine of humans. Am. J. Physiol., 1999, 277(5), G935-G943.
[PMID: 10564098]
[36]
Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids, 2007, 33(4), 547-562.
[http://dx.doi.org/10.1007/s00726-006-0477-9] [PMID: 17146590]
[37]
Rabot, S.; Membrez, M.; Bruneau, A.; Gérard, P.; Harach, T.; Moser, M.; Raymond, F.; Mansourian, R.; Chou, C.J. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J., 2010, 24(12), 4948-4959.
[http://dx.doi.org/10.1096/fj.10-164921] [PMID: 20724524]
[38]
Sato, H.; Zhang, L.S.; Martinez, K.; Chang, E.B.; Yang, Q.; Wang, F.; Howles, P.N.; Hokari, R.; Miura, S.; Tso, P. Antibiotics suppress activation of intestinal mucosal mast cells and reduce dietary lipid absorption in Sprague-Dawley rats. Gastroenterology, 2016, 151(5), 923-932.
[http://dx.doi.org/10.1053/j.gastro.2016.07.009] [PMID: 27436071]
[39]
Martinez-Guryn, K.; Hubert, N.; Frazier, K.; Urlass, S.; Musch, M.W.; Ojeda, P.; Pierre, J.F.; Miyoshi, J.; Sontag, T.J.; Cham, C.M.; Reardon, C.A.; Leone, V.; Chang, E.B. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe, 2018, 23(4), 458-4690.
[http://dx.doi.org/10.1016/j.chom.2018.03.011] [PMID: 29649441]
[40]
Cho, C.E.; Caudill, M.A. Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends Endocrinol. Metab., 2017, 28(2), 121-130.
[http://dx.doi.org/10.1016/j.tem.2016.10.005] [PMID: 27825547]
[41]
Fennema, D.; Phillips, I.R.; Shephard, E.A. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos., 2016, 44(11), 1839-1850.
[http://dx.doi.org/10.1124/dmd.116.070615] [PMID: 27190056]
[42]
Escolà-Gil, J.C.; Llaverias, G.; Julve, J.; Jauhiainen, M.; Méndez-González, J.; Blanco-Vaca, F. The cholesterol content of Western diets plays a major role in the paradoxical increase in high-density lipoprotein cholesterol and upregulates the macrophage reverse cholesterol transport pathway. Arterioscler. Thromb. Vasc. Biol., 2011, 31(11), 2493-2499.
[http://dx.doi.org/10.1161/ATVBAHA.111.236075] [PMID: 21885848]
[43]
Macdonald, I.A.; Bokkenheuser, V.D.; Winter, J.; McLernon, A.M.; Mosbach, E.H. Degradation of steroids in the human gut. J. Lipid Res., 1983, 24(6), 675-700.
[PMID: 6350517]
[44]
Gérard, P.; Béguet, F.; Lepercq, P.; Rigottier-Gois, L.; Rochet, V.; Andrieux, C.; Juste, C. Gnotobiotic rats harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion. FEMS Microbiol. Ecol., 2004, 47(3), 337-343.
[http://dx.doi.org/10.1016/S0168-6496(03)00285-X] [PMID: 19712322]
[45]
Ren, D.; Li, L.; Schwabacher, A.W.; Young, J.W.; Beitz, D.C. Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids, 1996, 61(1), 33-40.
[http://dx.doi.org/10.1016/0039-128X(95)00173-N] [PMID: 8789734]
[46]
Dujovne, C.A.; Ettinger, M.P.; McNeer, J.F.; Lipka, L.J.; LeBeaut, A.P.; Suresh, R.; Yang, B.; Veltri, E.P. Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am. J. Cardiol., 2002, 90(10), 1092-1097.
[http://dx.doi.org/10.1016/S0002-9149(02)02798-4] [PMID: 12423709]
[47]
Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care, 2016, 19(6), 471-476.
[http://dx.doi.org/10.1097/MCO.0000000000000314] [PMID: 27490306]
[48]
Hazim, S.; Curtis, P.J.; Schär, M.Y.; Ostertag, L.M.; Kay, C.D.; Minihane, A.M.; Cassidy, A. Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial. Am. J. Clin. Nutr., 2016, 103(3), 694-702.
[http://dx.doi.org/10.3945/ajcn.115.125690] [PMID: 26843154]
[49]
Quartieri, A.; García-Villalba, R.; Amaretti, A.; Raimondi, S.; Leonardi, A.; Rossi, M.; Tomàs-Barberàn, F. Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol. Nutr. Food Res., 2016, 60(7), 1590-1601.
[http://dx.doi.org/10.1002/mnfr.201500773] [PMID: 26873880]
[50]
Wang, D.; Ho, L.; Faith, J.; Ono, K.; Janle, E.M.; Lachcik, P.J.; Cooper, B.R.; Jannasch, A.H.; D’Arcy, B.R.; Williams, B.A.; Ferruzzi, M.G.; Levine, S.; Zhao, W.; Dubner, L.; Pasinetti, G.M. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol. Nutr. Food Res., 2015, 59(6), 1025-1040.
[http://dx.doi.org/10.1002/mnfr.201400544] [PMID: 25689033]
[51]
Takagaki, A.; Nanjo, F. Bioconversion of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by (-)-epigallocatechin-metabolizing bacteria. Biol. Pharm. Bull., 2015, 38(5), 789-794.
[http://dx.doi.org/10.1248/bpb.b14-00813] [PMID: 25947926]
[52]
Romo-Vaquero, M.; García-Villalba, R.; González-Sarrías, A.; Beltrán, D.; Tomás-Barberán, F.A.; Espín, J.C.; Selma, M.V. Interindividual variability in the human metabolism of ellagic acid: contribution of Gordonibacter to urolithin production. J. Funct. Food, 2015, 17, 785-791.
[http://dx.doi.org/10.1016/j.jff.2015.06.040]
[53]
Tomás-Barberán, F.A.; González-Sarrías, A.; García-Villalba, R.; Núñez-Sánchez, M.A.; Selma, M.V.; García-Conesa, M.T.; Espín, J.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res., 2017, 61(1), 1.
[http://dx.doi.org/10.1002/mnfr.201500901] [PMID: 27158799]
[54]
Gasperotti, M.; Passamonti, S.; Tramer, F.; Masuero, D.; Guella, G.; Mattivi, F.; Vrhovsek, U. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem. Neurosci., 2015, 6(8), 1341-1352.
[http://dx.doi.org/10.1021/acschemneuro.5b00051] [PMID: 25891864]
[55]
Yuan, T.; Ma, H.; Liu, W.; Niesen, D.B.; Shah, N.; Crews, R.; Rose, K.N.; Vattem, D.A.; Seeram, N.P. Affiliations expand pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem. Neurosci., 2016, 7(1), 26-33.
[http://dx.doi.org/10.1021/acschemneuro.5b00260] [PMID: 26559394]
[56]
Liu, Z.; Wang, Y.; Zhu, Z.; Yang, E.; Feng, X.; Fu, Z.; Jin, Y. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). Chemosphere, 2016, 148, 163-170.
[http://dx.doi.org/10.1016/j.chemosphere.2016.01.007] [PMID: 26803580]
[57]
Tu, W.; Xu, C.; Jin, Y.; Lu, B.; Lin, C.; Wu, Y.; Liu, W. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence. Aquat. Toxicol., 2016, 175, 39-46.
[http://dx.doi.org/10.1016/j.aquatox.2016.03.006] [PMID: 26994367]
[58]
Zhang, S.; Jin, Y.; Zeng, Z.; Liu, Z.; Fu, Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem. Res. Toxicol., 2015, 28(10), 2000-2009.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00237] [PMID: 26352046]
[59]
Liu, D.; Li, Y.; Ma, J.; Li, C.; Chen, X. Heavy metal pollution in urban soil from 1994 to 2012 in Kaifeng city, China. Water Air Soil Pollut., 2016, 227, 1-10.
[http://dx.doi.org/10.1007/s11270-016-2788-0]
[60]
Yu, Y.Y.; Chen, S.J.; Chen, M.; Tian, L.X.; Niu, J.; Liu, Y.J.; Xu, D.H. Effect of cadmium-polluted diet on growth, salinity stress, hepatotoxicity of juvenile Pacific white shrimp (Litopenaeus vannamei): protective effect of Zn(II)-curcumin. Ecotoxicol. Environ. Saf., 2016, 125, 176-183.
[http://dx.doi.org/10.1016/j.ecoenv.2015.11.043] [PMID: 26702716]
[61]
Jin, Y.; Wu, S.; Zeng, Z.; Fu, Z. Effects of environmental pollutants on gut microbiota. Environ. Pollut., 2017, 222, 1-9.
[http://dx.doi.org/10.1016/j.envpol.2016.11.045] [PMID: 28086130]
[62]
Bhattacharya, P.; Welch, A.H.; Stollenwerk, K.G.; McLaughlin, M.J.; Bundschuh, J.; Panaullah, G. Arsenic in the environment: biology and chemistry. Sci. Total Environ., 2007, 379(2-3), 109-120.
[http://dx.doi.org/10.1016/j.scitotenv.2007.02.037] [PMID: 17434206]
[63]
Wang, S.; Mulligan, C.N. Speciation and surface structure of inorganic arsenic in solid phases: a review. Environ. Int., 2008, 34(6), 867-879.
[http://dx.doi.org/10.1016/j.envint.2007.11.005] [PMID: 18164403]
[64]
D C Rubin, S.S.; Alava, P.; Zekker, I.; Du Laing, G.; Van de Wiele, T. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract. Environ. Health Perspect., 2014, 122(8), 817-822.
[http://dx.doi.org/10.1289/ehp.1307759] [PMID: 24833621]
[65]
Lu, K.; Abo, R.P.; Schlieper, K.A.; Graffam, M.E.; Levine, S.; Wishnok, J.S.; Swenberg, J.A.; Tannenbaum, S.R.; Fox, J.G. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ. Health Perspect., 2014, 122(3), 284-291.
[http://dx.doi.org/10.1289/ehp.1307429] [PMID: 24413286]
[66]
Dheer, R.; Patterson, J.; Dudash, M.; Stachler, E.N.; Bibby, K.J.; Stolz, D.B.; Shiva, S.; Wang, Z.; Hazen, S.L.; Barchowsky, A.; Stolz, J.F. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol. Appl. Pharmacol., 2015, 289(3), 397-408.
[http://dx.doi.org/10.1016/j.taap.2015.10.020] [PMID: 26529668]
[67]
Alghasham, A.; Salem, T.A.; Meki, A-R.M. Effect of cadmium-polluted water on plasma levels of tumor necrosis factor-α, interleukin-6 and oxidative status biomarkers in rats: protective effect of curcumin. Food Chem. Toxicol., 2013, 59, 160-164.
[http://dx.doi.org/10.1016/j.fct.2013.05.059] [PMID: 23764358]
[68]
Jin, Y.; Liu, L.; Zhang, S.; He, R.; Wu, Y.; Chen, G.; Fu, Z. Cadmium exposure to murine macrophages decreases their inflammatory responses and increases their oxidative stress. Chemosphere, 2016, 144, 168-175.
[http://dx.doi.org/10.1016/j.chemosphere.2015.08.084] [PMID: 26363317]
[69]
Neel, B.A.; Sargis, R.M. The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes, 2011, 60(7), 1838-1848.
[http://dx.doi.org/10.2337/db11-0153] [PMID: 21709279]
[70]
Choi, J.J.; Eum, S.Y.; Rampersaud, E.; Daunert, S.; Abreu, M.T.; Toborek, M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect., 2013, 121(6), 725-730.
[http://dx.doi.org/10.1289/ehp.1306534] [PMID: 23632211]
[71]
De, S.; Ghosh, S.; Dutta, S.K. Congener specific polychlorinated biphenyl metabolism by human intestinal microbe Clostridium species: comparison with human liver cell line-HepG2. Indian J. Microbiol., 2006, 46(3), 199-207.
[PMID: 25838614]
[72]
Zhang, L.; Nichols, R.G.; Correll, J.; Murray, I.A.; Tanaka, N.; Smith, P.B.; Hubbard, T.D.; Sebastian, A.; Albert, I.; Hatzakis, E.; Gonzalez, F.J.; Perdew, G.H.; Patterson, A.D. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ. Health Perspect., 2015, 123(7), 679-688.
[http://dx.doi.org/10.1289/ehp.1409055] [PMID: 25768209]
[73]
Nasuti, C.; Coman, M.M.; Olek, R.A.; Fiorini, D.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Fedeli, D.; Gabbianelli, R. Changes on fecal microbiota in rats exposed to permethrin during postnatal development. Environ. Sci. Pollut. Res. Int., 2016, 23(11), 10930-10937.
[http://dx.doi.org/10.1007/s11356-016-6297-x] [PMID: 26898931]
[74]
Nasuti, C.; Fattoretti, P.; Carloni, M.; Fedeli, D.; Ubaldi, M.; Ciccocioppo, R.; Gabbianelli, R. Neonatal exposure to permethrin pesticide causes lifelong fear and spatial learning deficits and alters hippocampal morphology of synapses. J. Neurodev. Disord., 2014, 6(1), 7.
[http://dx.doi.org/10.1186/1866-1955-6-7] [PMID: 24678976]
[75]
Joly, C.; Gay-Quéheillard, J.; Léké, A.; Chardon, K.; Delanaud, S.; Bach, V.; Khorsi-Cauet, H. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in the rat. Environ. Sci. Pollut. Res. Int., 2013, 20(5), 2726-2734.
[http://dx.doi.org/10.1007/s11356-012-1283-4] [PMID: 23135753]
[76]
Poet, T.S.; Wu, H.; Kousba, A.A.; Timchalk, C. In vitro rat hepatic and intestinal metabolism of the organophosphate pesticides chlorpyrifos and diazinon. Toxicol. Sci., 2003, 72(2), 193-200.
[http://dx.doi.org/10.1093/toxsci/kfg035] [PMID: 12655035]
[77]
Joly Condette, C.; Bach, V.; Mayeur, C.; Gay-Quéheillard, J.; Khorsi-Cauet, H. Chlorpyrifos exposure during perinatal period affects intestinal microbiota associated with delay of maturation of digestive tract in rats. J. Pediatr. Gastroenterol. Nutr., 2015, 61(1), 30-40.
[PMID: 25643018]
[78]
Sousa, T.; Paterson, R.; Moore, V.; Carlsson, A.; Abrahamsson, B.; Basit, A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm., 2008, 363(1-2), 1-25.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.009] [PMID: 18682282]
[79]
Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol., 2016, 14(5), 273-287.
[http://dx.doi.org/10.1038/nrmicro.2016.17] [PMID: 26972811]
[80]
Lehouritis, P.; Cummins, J.; Stanton, M.; Murphy, C.T.; McCarthy, F.O.; Reid, G.; Urbaniak, C.; Byrne, W.L.; Tangney, M. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci. Rep., 2015, 5, 14554.
[http://dx.doi.org/10.1038/srep14554] [PMID: 26416623]
[81]
Zhang, K.; Ni, Y. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization. Protein Expr. Purif., 2014, 94, 33-39.
[http://dx.doi.org/10.1016/j.pep.2013.10.018] [PMID: 24211777]
[82]
Li-Wan-Po, A. The human genome: its modifications and interactions with those of the microbiome, and the practice of genomic medicine. Discov. Med., 2013, 15(84), 283-290.
[PMID: 23725601]
[83]
Watabe, T.; Ogura, K.; Nishiyama, T. [Molecular toxicological mechanism of the lethal interactions of the new antiviral drug, sorivudine, with 5-fluorouracil prodrugs and genetic deficiency of dihydropyrimidine dehydrogenase]. Yakugaku Zasshi, 2002, 122(8), 527-535.
[http://dx.doi.org/10.1248/yakushi.122.527] [PMID: 12187768]
[84]
Haiser, H.J.; Gootenberg, D.B.; Chatman, K.; Sirasani, G.; Balskus, E.P.; Turnbaugh, P.J. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 2013, 341(6143), 295-298.
[http://dx.doi.org/10.1126/science.1235872] [PMID: 23869020]
[85]
Haiser, H.J.; Seim, K.L.; Balskus, E.P.; Turnbaugh, P.J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes, 2014, 5(2), 233-238.
[http://dx.doi.org/10.4161/gmic.27915] [PMID: 24637603]
[86]
Maini Rekdal, V.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science, 2019, 364(6445)eaau6323
[http://dx.doi.org/10.1126/science.aau6323] [PMID: 31196984]
[87]
WHO. General guidelines for methodologies on research and evaluation of traditional medicine; World Health Organization: Geneva, 2000.
[88]
Liu, J.Y.; Lee, K.F.; Sze, C.W.; Tong, Y.; Tang, S.C.W.; Ng, T.B.; Zhang, Y.B. Intestinal absorption and bioavailability of traditional Chinese medicines: a review of recent experimental progress and implication for quality control. J. Pharm. Pharmacol., 2013, 65(5), 621-633.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01608.x] [PMID: 23600379]
[89]
Liu, H.; Yang, J.; Du, F.; Gao, X.; Ma, X.; Huang, Y.; Xu, F.; Niu, W.; Wang, F.; Mao, Y.; Sun, Y.; Lu, T.; Liu, C.; Zhang, B.; Li, C. Absorption and disposition of ginsenosides after oral administration of panax notoginseng extract to rats. Drug Metab. Dispos., 2009, 37(12), 2290-2298.
[http://dx.doi.org/10.1124/dmd.109.029819] [PMID: 19786509]
[90]
Kim, D.H.; Kim, S.Y.; Park, S.Y.; Han, M.J. Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol. Pharm. Bull., 1999, 22(7), 749-751.
[http://dx.doi.org/10.1248/bpb.22.749] [PMID: 10443478]
[91]
Xu, J.; Chen, H.B.; Li, S.L. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Med. Res. Rev., 2016, 37(5), 1140-1185.
[PMID: 28052344]
[92]
Karigar, C.S.; Rao, S.S. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res., 2011, 2011805187
[http://dx.doi.org/10.4061/2011/805187] [PMID: 21912739]
[93]
Das, A.; Srinivasan, M.; Ghosh, T.S.; Mande, S.S. Xenobiotic metabolism and gut microbiomes. PLoS One, 2016, 11(10)e0163099
[http://dx.doi.org/10.1371/journal.pone.0163099] [PMID: 27695034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy