Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Cellular Retinoic-Acid Binding Protein 2 in Solid Tumor

Author(s): Xiaoyang Jiao*, Rang Liu, Jiali Huang, Lichun Lu, Zibo Li, Liyan Xu and Enmin Li*

Volume 21, Issue 5, 2020

Page: [507 - 516] Pages: 10

DOI: 10.2174/1389203721666200203150721

Price: $65

conference banner
Abstract

The retinoic acid (RA) signaling pathway is crucial for many biological processes. The RA transporter, Cellular Retinoic-Acid Binding Protein 2 (CRABP2), is abnormally expressed in various tumor types. CRABP2 presents significant effects on tumorous behaviors and functions, including cell proliferation, apoptosis, invasion, migration, metastasis, and angiogenesis. The tumorigenesis mechanism of CRABP2, as both suppressor and promotor, is complicated, therefore, there remains the need for further investigation. Elucidating the regulating mechanisms in a specific stage of the tumor could facilitate CRABP2 to be a biomarker in cancer diagnosis and prognosis. Besides, clarifying the pathways of CRABP2 in cancer development will contribute to the gene-targeted therapy. In this review, we summarized the expression, distribution, and mechanism of CRABP2 in solid tumors. Illuminating the CRABP2 signaling pathway may benefit understanding the retinoid signaling pathway, providing a useful biomarker for future clinical trials.

Keywords: CRABP2, Retinoic-acid, signaling pathway, tumor, protein, solid tumor.

Graphical Abstract
[1]
Banaszak, L.; Winter, N.; Xu, Z.; Bernlohr, D.A.; Cowan, S.; Jones, T.A. Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv. Protein Chem., 1994, 45, 89-151.
[http://dx.doi.org/10.1016/S0065-3233(08)60639-7] [PMID: 8154375]
[2]
Wang, L.; Li, Y.; Abildgaard, F.; Markley, J.L.; Yan, H. NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding. Biochemistry, 1998, 37(37), 12727-12736.
[http://dx.doi.org/10.1021/bi9808924] [PMID: 9737849]
[3]
Kleywegt, G.J.; Bergfors, T.; Senn, H.; Le Motte, P.; Gsell, B.; Shudo, K.; Jones, T.A. Crystal structures of cellular retinoic acid binding proteins I and II in complex with all-trans-retinoic acid and a synthetic retinoid. Structure, 1994, 2(12), 1241-1258.
[http://dx.doi.org/10.1016/S0969-2126(94)00125-1] [PMID: 7704533]
[4]
Wang, L.; Yan, H. NMR study suggests a major role for Arg111 in maintaining the structure and dynamical properties of type II human cellular retinoic acid binding protein. Biochemistry, 1998, 37(37), 13021-13032.
[http://dx.doi.org/10.1021/bi981021x] [PMID: 9737883]
[5]
Vaezeslami, S.; Mathes, E.; Vasileiou, C.; Borhan, B.; Geiger, J.H. The structure of Apo-wild-type cellular retinoic acid binding protein II at 1.4 A and its relationship to ligand binding and nuclear translocation. J. Mol. Biol., 2006, 363(3), 687-701.
[http://dx.doi.org/10.1016/j.jmb.2006.08.059] [PMID: 16979656]
[6]
Chen, X.; Tordova, M.; Gilliland, G.L.; Wang, L.; Li, Y.; Yan, H.; Ji, X. Crystal structure of apo-cellular retinoic acid-binding protein type II (R111M) suggests a mechanism of ligand entry. J. Mol. Biol., 1998, 278(3), 641-653.
[http://dx.doi.org/10.1006/jmbi.1998.1734] [PMID: 9600845]
[7]
Lixa, C.; Clarkson, M.W.; Iqbal, A.; Moon, T.M.; Almeida, F.C.L.; Peti, W.; Pinheiro, A.S. Retinoic Acid Binding Leads to CRABP2 Rigidification and Dimerization. Biochemistry, 2019, 58(41), 4183-4194.
[http://dx.doi.org/10.1021/acs.biochem.9b00672] [PMID: 31566355]
[8]
Norris, A.W.; Cheng, L.; Giguère, V.; Rosenberger, M.; Li, E. Measurement of subnanomolar retinoic acid binding affinities for cellular retinoic acid binding proteins by fluorometric titration. Biochim. Biophys. Acta, 1994, 1209(1), 10-18.
[http://dx.doi.org/10.1016/0167-4838(94)90130-9] [PMID: 7947970]
[9]
Vreeland, A.C.; Levi, L.; Zhang, W.; Berry, D.C.; Noy, N. Cellular retinoic acid-binding protein 2 inhibits tumor growth by two distinct mechanisms. J. Biol. Chem., 2014, 289(49), 34065-34073.
[http://dx.doi.org/10.1074/jbc.M114.604041] [PMID: 25320093]
[10]
Budhu, A.; Gillilan, R.; Noy, N. Localization of the RAR interaction domain of cellular retinoic acid binding protein-II. J. Mol. Biol., 2001, 305(4), 939-949.
[http://dx.doi.org/10.1006/jmbi.2000.4340] [PMID: 11162104]
[11]
Dong, D.; Ruuska, S.E.; Levinthal, D.J.; Noy, N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J. Biol. Chem., 1999, 274(34), 23695-23698.
[http://dx.doi.org/10.1074/jbc.274.34.23695] [PMID: 10446126]
[12]
Zhang, W.; Vreeland, A.C.; Noy, N. RNA-binding protein HuR regulates nuclear import of protein. J. Cell Sci., 2016, 129(21), 4025-4033.
[http://dx.doi.org/10.1242/jcs.192096] [PMID: 27609837]
[13]
Sessler, R.J.; Noy, N. A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II. Mol. Cell, 2005, 18(3), 343-353.
[http://dx.doi.org/10.1016/j.molcel.2005.03.026] [PMID: 15866176]
[14]
Boylan, J.F.; Gudas, L.J. Overexpression of the cellular retinoic acid binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells. J. Cell Biol., 1991, 112(5), 965-979.
[http://dx.doi.org/10.1083/jcb.112.5.965] [PMID: 1847931]
[15]
Boylan, J.F.; Gudas, L.J. The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. J. Biol. Chem., 1992, 267(30), 21486-21491.
[PMID: 1328234]
[16]
Gorry, P.; Lufkin, T.; Dierich, A.; Rochette-Egly, C.; Décimo, D.; Dollé, P.; Mark, M.; Durand, B.; Chambon, P. The cellular retinoic acid binding protein I is dispensable. Proc. Natl. Acad. Sci. USA, 1994, 91(19), 9032-9036.
[http://dx.doi.org/10.1073/pnas.91.19.9032] [PMID: 8090764]
[17]
Nelson, C.H.; Peng, C.C.; Lutz, J.D.; Yeung, C.K.; Zelter, A.; Isoherranen, N. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1. FEBS Lett., 2016, 590(16), 2527-2535.
[http://dx.doi.org/10.1002/1873-3468.12303] [PMID: 27416800]
[18]
Budhu, A.S.; Noy, N. Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol. Cell. Biol., 2002, 22(8), 2632-2641.
[http://dx.doi.org/10.1128/MCB.22.8.2632-2641.2002] [PMID: 11909957]
[19]
Schug, T.T.; Berry, D.C.; Shaw, N.S.; Travis, S.N.; Noy, N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell, 2007, 129(4), 723-733.
[http://dx.doi.org/10.1016/j.cell.2007.02.050] [PMID: 17512406]
[20]
Ghaffari, H.; Petzold, L.R. Identification of influential proteins in the classical retinoic acid signaling pathway. Theor. Biol. Med. Model., 2018, 15(1), 16.
[http://dx.doi.org/10.1186/s12976-018-0088-7] [PMID: 30322383]
[21]
Lotan, R. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim. Biophys. Acta, 1980, 605(1), 33-91.
[PMID: 6989400]
[22]
Giguere, V.; Ong, E.S.; Segui, P.; Evans, R.M. Identification of a receptor for the morphogen retinoic acid. Nature, 1987, 330(6149), 624-629.
[http://dx.doi.org/10.1038/330624a0] [PMID: 2825036]
[23]
Petkovich, M.; Brand, N.J.; Krust, A.; Chambon, P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature, 1987, 330(6147), 444-450.
[http://dx.doi.org/10.1038/330444a0] [PMID: 2825025]
[24]
Brand, N.; Petkovich, M.; Krust, A.; Chambon, P.; de Thé, H.; Marchio, A.; Tiollais, P.; Dejean, A. Identification of a second human retinoic acid receptor. Nature, 1988, 332(6167), 850-853.
[http://dx.doi.org/10.1038/332850a0] [PMID: 2833708]
[25]
Benbrook, D.; Lernhardt, E.; Pfahl, M. A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature, 1988, 333(6174), 669-672.
[http://dx.doi.org/10.1038/333669a0] [PMID: 2836738]
[26]
Zelent, A.; Krust, A.; Petkovich, M.; Kastner, P.; Chambon, P. Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin. Nature, 1989, 339(6227), 714-717.
[http://dx.doi.org/10.1038/339714a0] [PMID: 2544807]
[27]
Krust, A.; Kastner, P.; Petkovich, M.; Zelent, A.; Chambon, P. A third human retinoic acid receptor, hRAR-gamma. Proc. Natl. Acad. Sci. USA, 1989, 86(14), 5310-5314.
[http://dx.doi.org/10.1073/pnas.86.14.5310] [PMID: 2546152]
[28]
Giguère, V.; Shago, M.; Zirngibl, R.; Tate, P.; Rossant, J.; Varmuza, S. Identification of a novel isoform of the retinoic acid receptor gamma expressed in the mouse embryo. Mol. Cell. Biol., 1990, 10(5), 2335-2340.
[http://dx.doi.org/10.1128/MCB.10.5.2335] [PMID: 2157970]
[29]
Maden, M.; Ong, D.E.; Summerbell, D.; Chytil, F. Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature, 1988, 335(6192), 733-735.
[http://dx.doi.org/10.1038/335733a0] [PMID: 2845280]
[30]
Umesono, K.; Giguere, V.; Glass, C.K.; Rosenfeld, M.G.; Evans, R.M. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature, 1988, 336(6196), 262-265.
[http://dx.doi.org/10.1038/336262a0] [PMID: 2848197]
[31]
de Thé, H.; Vivanco-Ruiz, M.M.; Tiollais, P.; Stunnenberg, H.; Dejean, A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature, 1990, 343(6254), 177-180.
[http://dx.doi.org/10.1038/343177a0] [PMID: 2153268]
[32]
Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J., 1996, 10(9), 940-954.
[http://dx.doi.org/10.1096/fasebj.10.9.8801176] [PMID: 8801176]
[33]
Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell, 2008, 134(6), 921-931.
[http://dx.doi.org/10.1016/j.cell.2008.09.002] [PMID: 18805086]
[34]
Noy, N. Between death and survival: retinoic acid in regulation of apoptosis. Annu. Rev. Nutr., 2010, 30, 201-217.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155509] [PMID: 20415582]
[35]
Gillilan, R.E.; Ayers, S.D.; Noy, N. Structural basis for activation of fatty acid-binding protein 4. J. Mol. Biol., 2007, 372(5), 1246-1260.
[http://dx.doi.org/10.1016/j.jmb.2007.07.040] [PMID: 17761196]
[36]
Armstrong, E.H.; Goswami, D.; Griffin, P.R.; Noy, N.; Ortlund, E.A. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. J. Biol. Chem., 2014, 289(21), 14941-14954.
[http://dx.doi.org/10.1074/jbc.M113.514646] [PMID: 24692551]
[37]
Hoodin, F.; LaLonde, L.; Errickson, J.; Votruba, K.; Kentor, R.; Gatza, E.; Reddy, P.; Choi, S.W. Cognitive Function and Quality of Life in Vorinostat-Treated Patients after Matched Unrelated Donor Myeloablative Conditioning Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant., 2019, 25(2), 343-353.
[http://dx.doi.org/10.1016/j.bbmt.2018.09.015] [PMID: 30244099]
[38]
Vo, H.P.; Crowe, D.L. Transcriptional regulation of retinoic acid responsive genes by cellular retinoic acid binding protein-II modulates RA mediated tumor cell proliferation and invasion. Anticancer Res., 1998, 18(1A), 217-224.
[PMID: 9568080]
[39]
Tang, X.H.; Gudas, L.J. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol., 2011, 6, 345-364.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130303] [PMID: 21073338]
[40]
Xiao, W.; Hong, H.; Awadallah, A.; Yu, S.; Zhou, L.; Xin, W. CRABP-II is a highly sensitive and specific diagnostic molecular marker for pancreatic ductal adenocarcinoma in distinguishing from benign pancreatic conditions. Hum. Pathol., 2014, 45(6), 1177-1183.
[http://dx.doi.org/10.1016/j.humpath.2014.01.014] [PMID: 24709110]
[41]
Soprano, D.R.; Qin, P.; Soprano, K.J. Retinoic acid receptors and cancers. Annu. Rev. Nutr., 2004, 24, 201-221.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132407] [PMID: 15189119]
[42]
Donato, L.J.; Noy, N. Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res., 2005, 65(18), 8193-8199.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1177] [PMID: 16166294]
[43]
Morgan, E.; Kannan-Thulasiraman, P.; Noy, N. Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res., 2010, 65(18), 8193-8199.
[44]
Manor, D.; Shmidt, E.N.; Budhu, A.; Flesken-Nikitin, A.; Zgola, M.; Page, R.; Nikitin, A.Y.; Noy, N. Mammary carcinoma suppression by cellular retinoic acid binding protein-II. Cancer Res., 2003, 63(15), 4426-4433.
[PMID: 12907615]
[45]
Levi, L.; Lobo, G.; Doud, M.K.; von Lintig, J.; Seachrist, D.; Tochtrop, G.P.; Noy, N. Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Cancer Res., 2013, 73(15), 4770-4780.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0384] [PMID: 23722546]
[46]
Chrun, E.S.; Modolo, F.; Daniel, F.I. Histone modifications: A review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol. Res. Pract., 2017, 213(11), 1329-1339.
[http://dx.doi.org/10.1016/j.prp.2017.06.013] [PMID: 28882400]
[47]
Gupta, S.; Pramanik, D.; Mukherjee, R.; Campbell, N.R.; Elumalai, S.; de Wilde, R.F.; Hong, S.M.; Goggins, M.G.; De Jesus-Acosta, A.; Laheru, D.; Maitra, A. Molecular determinants of retinoic acid sensitivity in pancreatic cancer. Clin. Cancer Res., 2012, 18(1), 280-289.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2165] [PMID: 22010213]
[48]
Campos, B.; Warta, R.; Chaisaingmongkol, J.; Geiselhart, L.; Popanda, O.; Hartmann, C.; von Deimling, A.; Unterberg, A.; Plass, C.; Schmezer, P.; Herold-Mende, C. Epigenetically mediated downregulation of the differentiation-promoting chaperon protein CRABP2 in astrocytic gliomas. Int. J. Cancer, 2012, 131(8), 1963-1968.
[http://dx.doi.org/10.1002/ijc.27446] [PMID: 22275178]
[49]
Di-Poï, N.; Tan, N.S.; Michalik, L.; Wahli, W.; Desvergne, B. Antiapoptotic role of PPARbeta in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol. Cell, 2002, 10(4), 721-733.
[http://dx.doi.org/10.1016/S1097-2765(02)00646-9] [PMID: 12419217]
[50]
Wang, D.; Wang, H.; Guo, Y.; Ning, W.; Katkuri, S.; Wahli, W.; Desvergne, B.; Dey, S.K.; DuBois, R.N. Crosstalk between peroxisome proliferator-activated receptor delta and VEGF stimulates cancer progression. Proc. Natl. Acad. Sci. USA, 2006, 103(50), 19069-19074.
[http://dx.doi.org/10.1073/pnas.0607948103] [PMID: 17148604]
[51]
Hinman, M.N.; Lou, H. Diverse molecular functions of Hu proteins. Cell. Mol. Life Sci., 2008, 65(20), 3168-3181.
[http://dx.doi.org/10.1007/s00018-008-8252-6] [PMID: 18581050]
[52]
Vreeland, A.C.; Yu, S.; Levi, L.; de Barros Rossetto, D.; Noy, N. Transcript stabilization by the RNA-binding protein HuR is regulated by cellular retinoic acid-binding protein 2. Mol. Cell. Biol., 2014, 34(12), 2135-2146.
[http://dx.doi.org/10.1128/MCB.00281-14] [PMID: 24687854]
[53]
Donato, L.J.; Suh, J.H.; Noy, N. Suppression of mammary carcinoma cell growth by retinoic acid: the cell cycle control gene Btg2 is a direct target for retinoic acid receptor signaling. Cancer Res., 2007, 67(2), 609-615.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0989] [PMID: 17234770]
[54]
Schug, T.T.; Berry, D.C.; Toshkov, I.A.; Cheng, L.; Nikitin, A.Y.; Noy, N. Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPARbeta/delta to RAR. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7546-7551.
[http://dx.doi.org/10.1073/pnas.0709981105] [PMID: 18495924]
[55]
Yang, Q.; Wang, R.; Xiao, W.; Sun, F.; Yuan, H.; Pan, Q. Cellular Retinoic Acid Binding Protein 2 Is Strikingly Downregulated in Human Esophageal Squamous Cell Carcinoma and Functions as a Tumor Suppressor. PLoS One, 2016, 11(2), e0148381
[http://dx.doi.org/10.1371/journal.pone.0148381] [PMID: 26839961]
[56]
Warrell, R.P., Jr; Frankel, S.R.; Miller, W.H., Jr; Scheinberg, D.A.; Itri, L.M.; Hittelman, W.N.; Vyas, R.; Andreeff, M.; Tafuri, A.; Jakubowski, A. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N. Engl. J. Med., 1991, 324(20), 1385-1393.
[http://dx.doi.org/10.1056/NEJM199105163242002] [PMID: 1850498]
[57]
Petrie, K.; Zelent, A.; Waxman, S. Differentiation therapy of acute myeloid leukemia: past, present and future. Curr. Opin. Hematol., 2009, 16(2), 84-91.
[http://dx.doi.org/10.1097/MOH.0b013e3283257aee] [PMID: 19468269]
[58]
Mongan, N.P.; Gudas, L.J. Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation, 2007, 75(9), 853-870.
[http://dx.doi.org/10.1111/j.1432-0436.2007.00206.x] [PMID: 17634071]
[59]
Garattini, E.; Gianni, M.; Terao, M. Retinoids as differentiating agents in oncology: a network of interactions with intracellular pathways as the basis for rational therapeutic combinations. Curr. Pharm. Des., 2007, 13(13), 1375-1400.
[http://dx.doi.org/10.2174/138161207780618786] [PMID: 17506722]
[60]
Liu, R.Z.; Garcia, E.; Glubrecht, D.D.; Poon, H.Y.; Mackey, J.R.; Godbout, R. CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid. Mol. Cancer, 2015, 14, 129.
[http://dx.doi.org/10.1186/s12943-015-0380-7] [PMID: 26142905]
[61]
Fischer-Huchzermeyer, S.; Dombrowski, A.; Hagel, C.; Mautner, V.F.; Schittenhelm, J.; Harder, A. The Cellular Retinoic Acid Binding Protein 2 Promotes Survival of Malignant Peripheral Nerve Sheath Tumor Cells. Am. J. Pathol., 2017, 187(7), 1623-1632.
[http://dx.doi.org/10.1016/j.ajpath.2017.02.021] [PMID: 28502478]
[62]
Giguère, V.; Lyn, S.; Yip, P.; Siu, C.H.; Amin, S. Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc. Natl. Acad. Sci. USA, 1990, 87(16), 6233-6237.
[http://dx.doi.org/10.1073/pnas.87.16.6233] [PMID: 2166951]
[63]
Regina, A.; Demeule, M.; Tripathy, S.; Lord-Dufour, S.; Currie, J.C.; Iddir, M.; Annabi, B.; Castaigne, J.P.; Lachowicz, J.E. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol. Cancer Ther., 2015, 14(1), 129-140.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0399] [PMID: 25492620]
[64]
Favorskaya, I.; Kainov, Y.; Chemeris, G.; Komelkov, A.; Zborovskaya, I.; Tchevkina, E. Expression and clinical significance of CRABP1 and CRABP2 in non-small cell lung cancer. Tumour Biol., 2014, 35(10), 10295-10300.
[http://dx.doi.org/10.1007/s13277-014-2348-4] [PMID: 25034531]
[65]
Murray, G.I.; Patimalla, S.; Stewart, K.N.; Miller, I.D.; Heys, S.D. Profiling the expression of cytochrome P450 in breast cancer. Histopathology, 2010, 57(2), 202-211.
[http://dx.doi.org/10.1111/j.1365-2559.2010.03606.x] [PMID: 20716162]
[66]
Liu, R.Z.; Li, S.; Garcia, E.; Glubrecht, D.D.; Poon, H.Y.; Easaw, J.C.; Godbout, R. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia, 2016, 64(6), 963-976.
[http://dx.doi.org/10.1002/glia.22976] [PMID: 26893190]
[67]
Campos, B.; Centner, F.S.; Bermejo, J.L.; Ali, R.; Dorsch, K.; Wan, F.; Felsberg, J.; Ahmadi, R.; Grabe, N.; Reifenberger, G.; Unterberg, A.; Burhenne, J.; Herold-Mende, C. Aberrant expression of retinoic acid signaling molecules influences patient survival in astrocytic gliomas. Am. J. Pathol., 2011, 178(5), 1953-1964.
[http://dx.doi.org/10.1016/j.ajpath.2011.01.051] [PMID: 21514413]
[68]
Stucky, C.C.; Johnson, K.N.; Gray, R.J.; Pockaj, B.A.; Ocal, I.T.; Rose, P.S.; Wasif, N. Malignant peripheral nerve sheath tumors (MPNST): the Mayo Clinic experience. Ann. Surg. Oncol., 2012, 19(3), 878-885.
[http://dx.doi.org/10.1245/s10434-011-1978-7] [PMID: 21861229]
[69]
Simeone, A.M.; Tari, A.M. How retinoids regulate breast cancer cell proliferation and apoptosis. Cell. Mol. Life Sci., 2004, 61(12), 1475-1484.
[http://dx.doi.org/10.1007/s00018-004-4002-6] [PMID: 15197471]
[70]
Liu, R.Z.; Graham, K.; Glubrecht, D.D.; Germain, D.R.; Mackey, J.R.; Godbout, R. Association of FABP5 expression with poor survival in triple-negative breast cancer: implication for retinoic acid therapy. Am. J. Pathol., 2011, 178(3), 997-1008.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.075] [PMID: 21356353]
[71]
Geiger, T.; Madden, S.F.; Gallagher, W.M.; Cox, J.; Mann, M. Proteomic portrait of human breast cancer progression identifies novel prognostic markers. Cancer Res., 2012, 72(9), 2428-2439.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3711] [PMID: 22414580]
[72]
Jing, Y.; Waxman, S.; Mira-y-Lopez, R. The cellular retinoic acid binding protein II is a positive regulator of retinoic acid signaling in breast cancer cells. Cancer Res., 1997, 57(9), 1668-1672.
[PMID: 9135005]
[73]
Bertucci, F.; Houlgatte, R.; Benziane, A.; Granjeaud, S.; Adélaïde, J.; Tagett, R.; Loriod, B.; Jacquemier, J.; Viens, P.; Jordan, B.; Birnbaum, D.; Nguyen, C. Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Hum. Mol. Genet., 2000, 9(20), 2981-2991.
[http://dx.doi.org/10.1093/hmg/9.20.2981] [PMID: 11115842]
[74]
Feng, X.; Zhang, M.; Wang, B.; Zhou, C.; Mu, Y.; Li, J.; Liu, X.; Wang, Y.; Song, Z.; Liu, P. CRABP2 regulates invasion and metastasis of breast cancer through hippo pathway dependent on ER status. J. Exp. Clin. Cancer Res., 2019, 38(1), 361.
[http://dx.doi.org/10.1186/s13046-019-1345-2] [PMID: 31419991]
[75]
Passeri, D.; Doldo, E.; Tarquini, C.; Costanza, G.; Mazzaglia, D.; Agostinelli, S.; Campione, E.; Di Stefani, A.; Giunta, A.; Bianchi, L.; Orlandi, A. Loss of CRABP-II Characterizes Human Skin Poorly Differentiated Squamous Cell Carcinomas and Favors DMBA/TPA-Induced Carcinogenesis. J. Invest. Dermatol., 2016, 136(6), 1255-1266.
[http://dx.doi.org/10.1016/j.jid.2016.01.039] [PMID: 26945879]
[76]
Noy, N. Retinoid-binding proteins: mediators of retinoid action. Biochem. J., 2000, 348(Pt 3), 481-495.
[http://dx.doi.org/10.1042/bj3480481] [PMID: 10839978]
[77]
Eller, M.S.; Muz, P.; Gilchrest, B.A. Regulation of CRABP II mRNA expression in human keratinocytes. Exp. Dermatol., 1995, 4(2), 97-103.
[http://dx.doi.org/10.1111/j.1600-0625.1995.tb00230.x] [PMID: 7640882]
[78]
Eller, M.S.; Harkness, D.D.; Bhawan, J.; Gilchrest, B.A. Epidermal differentiation enhances CRABP II expression in human skin. J. Invest. Dermatol., 1994, 103(6), 785-790.
[http://dx.doi.org/10.1111/1523-1747.ep12413037] [PMID: 7798615]
[79]
Karlsson, T.; Virtanen, M.; Sirsjö, A.; Rollman, O.; Vahlquist, A.; Törmä, H. Topical retinoic acid alters the expression of cellular retinoic acid-binding protein-I and cellular retinoic acid-binding protein-II in non-lesional but not lesional psoriatic skin. Exp. Dermatol., 2002, 11(2), 143-152.
[http://dx.doi.org/10.1034/j.1600-0625.2002.110206.x] [PMID: 11994141]
[80]
Orlandi, A.; Ferlosio, A.; Ciucci, A.; Francesconi, A.; Lifschitz-Mercer, B.; Gabbiani, G.; Spagnoli, L.G.; Czernobilsky, B. Cellular retinol binding protein-1 expression in endometrial hyperplasia and carcinoma: diagnostic and possible therapeutic implications. Mod. Pathol., 2006, 19(6), 797-803.
[http://dx.doi.org/10.1038/modpathol.3800586] [PMID: 16575402]
[81]
Schmitt-Graeff, A.; Koeninger, A.; Olschewski, M.; Haxelmans, S.; Nitschke, R.; Bochaton-Piallat, M.L.; Lifschitz-Mercer, B.; Gabbiani, G.; Langbein, L.; Czernobilsky, B. The Ki67+ proliferation index correlates with increased cellular retinol-binding protein-1 and the coordinated loss of plakophilin-1 and desmoplakin during progression of cervical squamous lesions. Histopathology, 2007, 51(1), 87-97.
[http://dx.doi.org/10.1111/j.1365-2559.2007.02724.x] [PMID: 17593084]
[82]
Orlandi, A.; Ferlosio, A.; Ciucci, A.; Sesti, F.; Lifschitz-Mercer, B.; Gabbiani, G.; Spagnoli, L.G.; Czernobilsky, B. Cellular retinol-binding protein-1 expression in endometrial stromal cells: physiopathological and diagnostic implications. Histopathology, 2004, 45(5), 511-517.
[http://dx.doi.org/10.1111/j.1365-2559.2004.01963.x] [PMID: 15500655]
[83]
Gupta, A.; Kessler, P.; Rawwas, J.; Williams, B.R. Regulation of CRABP-II expression by MycN in Wilms tumor. Exp. Cell Res., 2008, 314(20), 3663-3668.
[http://dx.doi.org/10.1016/j.yexcr.2008.09.029] [PMID: 18955045]
[84]
Zirn, B.; Hartmann, O.; Samans, B.; Krause, M.; Wittmann, S.; Mertens, F.; Graf, N.; Eilers, M.; Gessler, M. Expression profiling of Wilms tumors reveals new candidate genes for different clinical parameters. Int. J. Cancer, 2006, 118(8), 1954-1962.
[http://dx.doi.org/10.1002/ijc.21564] [PMID: 16287080]
[85]
Wegert, J.; Bausenwein, S.; Kneitz, S.; Roth, S.; Graf, N.; Geissinger, E.; Gessler, M. Retinoic acid pathway activity in Wilms tumors and characterization of biological responses in vitro. Mol. Cancer, 2011, 10, 136.
[http://dx.doi.org/10.1186/1476-4598-10-136] [PMID: 22067876]
[86]
Percicote, A.P.; Mardegan, G.L.; Gugelmim, E.S.; Ioshii, S.O.; Kuczynski, A.P.; Nagashima, S.; de Noronha, L. Tissue expression of retinoic acid receptor alpha and CRABP2 in metastatic nephroblastomas. Diagn. Pathol., 2018, 13(1), 9.
[http://dx.doi.org/10.1186/s13000-018-0686-z] [PMID: 29378601]
[87]
Takahashi, M.; Yang, X.J.; Lavery, T.T.; Furge, K.A.; Williams, B.O.; Tretiakova, M.; Montag, A.; Vogelzang, N.J.; Re, G.G.; Garvin, A.J.; Söderhäll, S.; Kagawa, S.; Hazel-Martin, D.; Nordenskjold, A.; Teh, B.T. Gene expression profiling of favorable histology Wilms tumors and its correlation with clinical features. Cancer Res., 2002, 62(22), 6598-6605.
[PMID: 12438255]
[88]
Napoli, J.L. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol. Ther., 2017, 173, 19-33.
[http://dx.doi.org/10.1016/j.pharmthera.2017.01.004] [PMID: 28132904]
[89]
Han, S.S.; Kim, W.J.; Hong, Y.; Hong, S.H.; Lee, S.J.; Ryu, D.R.; Lee, W.; Cho, Y.H.; Lee, S.; Ryu, Y.J.; Won, J.Y.; Rhee, H.; Park, J.H.; Jang, S.J.; Lee, J.S.; Choi, C.M.; Lee, J.C.; Lee, S.D.; Oh, Y.M. RNA sequencing identifies novel markers of non-small cell lung cancer. Lung Cancer, 2014, 84(3), 229-235.
[http://dx.doi.org/10.1016/j.lungcan.2014.03.018] [PMID: 24751108]
[90]
Kim, D.J.; Kim, W.J.; Lim, M.; Hong, Y.; Lee, S.J.; Hong, S.H.; Heo, J.; Lee, H.Y.; Han, S.S. Plasma CRABP2 as a Novel Biomarker in Patients with Non-Small Cell Lung Cancer. J. Korean Med. Sci., 2018, 33(26), e178
[http://dx.doi.org/10.3346/jkms.2018.33.e178] [PMID: 29930489]
[91]
Wu, J.I.; Lin, Y.P.; Tseng, C.W.; Chen, H.J.; Wang, L.H. Crabp2 Promotes Metastasis of Lung Cancer Cells via HuR and Integrin β1/FAK/ERK Signaling. Sci. Rep., 2019, 9(1), 845.
[http://dx.doi.org/10.1038/s41598-018-37443-4] [PMID: 30696915]
[92]
Riecken, E.O.; Rosewicz, S. Retinoids in pancreatic cancer. Ann. Oncol., 1999, 10(Suppl. 4), 197-200.
[http://dx.doi.org/10.1093/annonc/10.suppl_4.S197] [PMID: 10436821]
[93]
Calmon, M.F.; Rodrigues, R.V.; Kaneto, C.M.; Moura, R.P.; Silva, S.D.; Mota, L.D.; Pinheiro, D.G.; Torres, C.; de Carvalho, A.F.; Cury, P.M.; Nunes, F.D.; Nishimoto, I.N.; Soares, F.A.; da Silva, A.M.; Kowalski, L.P.; Brentani, H.; Zanelli, C.F.; Silva, W.A., Jr; Rahal, P.; Tajara, E.H.; Carraro, D.M.; Camargo, A.A.; Valentini, S.R. Epigenetic silencing of CRABP2 and MX1 in head and neck tumors. Neoplasia, 2009, 11(12), 1329-1339.
[http://dx.doi.org/10.1593/neo.91110] [PMID: 20019841]
[94]
Okuducu, A.F.; Janzen, V.; Ko, Y.; Hahne, J.C.; Lu, H.; Ma, Z.L.; Albers, P.; Sahin, A.; Wellmann, A.; Scheinert, P.; Wernert, N. Cellular retinoic acid-binding protein 2 is down-regulated in prostate cancer. Int. J. Oncol., 2005, 27(5), 1273-1282.
[http://dx.doi.org/10.3892/ijo.27.5.1273] [PMID: 16211222]
[95]
Thompson, M.; Lapointe, J.; Choi, Y.L.; Ong, D.E.; Higgins, J.P.; Brooks, J.D.; Pollack, J.R. Identification of candidate prostate cancer genes through comparative expression-profiling of seminal vesicle. Prostate, 2008, 68(11), 1248-1256.
[http://dx.doi.org/10.1002/pros.20792] [PMID: 18500686]
[96]
Toyama, A.; Suzuki, A.; Shimada, T.; Aoki, C.; Aoki, Y.; Umino, Y.; Nakamura, Y.; Aoki, D.; Sato, T.A. Proteomic characterization of ovarian cancers identifying annexin-A4, phosphoserine aminotransferase, cellular retinoic acid-binding protein 2, and serpin B5 as histology-specific biomarkers. Cancer Sci., 2012, 103(4), 747-755.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02224.x] [PMID: 22321069]
[97]
Hibbs, K.; Skubitz, K.M.; Pambuccian, S.E.; Casey, R.C.; Burleson, K.M.; Oegema, T.R., Jr; Thiele, J.J.; Grindle, S.M.; Bliss, R.L.; Skubitz, A.P. Differential gene expression in ovarian carcinoma: identification of potential biomarkers. Am. J. Pathol., 2004, 165(2), 397-414.
[http://dx.doi.org/10.1016/S0002-9440(10)63306-8] [PMID: 15277215]
[98]
Tsibris, J.C.; Segars, J.; Coppola, D.; Mane, S.; Wilbanks, G.D.; O’Brien, W.F.; Spellacy, W.N. Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil. Steril., 2002, 78(1), 114-121.
[http://dx.doi.org/10.1016/S0015-0282(02)03191-6] [PMID: 12095500]
[99]
Yamamoto, M.; Dräger, U.C.; Ong, D.E.; McCaffery, P. Retinoid-binding proteins in the cerebellum and choroid plexus and their relationship to regionalized retinoic acid synthesis and degradation. Eur. J. Biochem., 1998, 257(2), 344-350.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2570344.x] [PMID: 9826179]
[100]
Zheng, W.L.; Bucco, R.A.; Schmitt, M.C.; Wardlaw, S.A.; Ong, D.E. Localization of cellular retinoic acid-binding protein (CRABP) II and CRABP in developing rat testis. Endocrinology, 1996, 137(11), 5028-5035.
[http://dx.doi.org/10.1210/endo.137.11.8895377] [PMID: 8895377]
[101]
Thulasiraman, P.; Garriga, G.; Danthuluri, V.; McAndrews, D.J.; Mohiuddin, I.Q. Activation of the CRABPII/RAR pathway by curcumin induces retinoic acid mediated apoptosis in retinoic acid resistant breast cancer cells. Oncol. Rep., 2017, 37(4), 2007-2015.
[http://dx.doi.org/10.3892/or.2017.5495] [PMID: 28350049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy