Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Radioiodinated Ginger Compounds (6-gingerol and 6-shogaol) and Incorporation Assays on Breast Cancer Cells

Author(s): Kadriye B. Karatay , Ayfer Yurt Kılçar*, Emine Derviş and Fazilet Z. Biber Müftüler

Volume 20, Issue 9, 2020

Page: [1129 - 1139] Pages: 11

DOI: 10.2174/1871520620666200128114215

Price: $65

conference banner
Abstract

Background: 6-Gingerol (6G) and 6-Shogaol (6S) are the main active components of ginger. 6-Gingerol is known for its anti-metastatic and anti-invasive pharmacological activities on cancer cells, besides, 6-Shogaol also inhibits breast cancer cell invasion.

Objective: In this study, radioiodination (131I) of 6G and 6S was aimed. Additionally, it is aimed to monitor their incorporation behavior on breast cancer cell lines.

Methods: 6-Gingerol was isolated from the fresh ginger-roots extract, additionally, dehydrated to obtain 6-Shogaol. 6G and 6S were radioiodinated using iodogen method. Quality control studies of radioiodinated ginger compounds (6G and 6S) were performed by thin layer radio-chromatography. In vitro studies of radioiodinated ginger compounds on MCF-7 and MDA-MB-231 cells were performed with incorporation assays.

Results: 6-Gingerol and 6-Shogaol were radioiodinated (131I-6G and 131I-6S) in high yields over 95%. 131I-6S demonstrated higher incorporation values than 131I-6G on MDA-MB-231 cells. Incorporation behavior of 131I-6G and 131I-6S was similar to MCF-7 cells.

Conclusion: It has been observed that ginger compounds were radioiodinated successfully and 131I-6S have a noteworthy incorporation on MDA-MB-231 cells which is a known breast carcinoma cell line with highly invasive characteristics.

Keywords: 6-gingerol, 6-shogaol, radioidination, iodine-131, breast cancer cell lines, radio-chromatography.

Graphical Abstract
[1]
Yudthavorasit, S.; Wongravee, K.; Leepipatpiboon, N. Characteristic fingerprint based on gingerol derivative analysis for discrimination of ginger (Zingiber officinale) according to geographical origin using HPLC-DAD combined with chemometrics. Food Chem., 2014, 158, 101-111.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.086] [PMID: 24731320]
[2]
Bode, A.M.; Dong, Z. The amazing and mighty ginger. In: Herbal Medicine: Biomolecular and Clinical Aspects:; Second Edition; CRC Press, 2011.
[http://dx.doi.org/10.1201/b10787-8]
[3]
Saha, A.; Blando, J.; Silver, E.; Beltran, L.; Sessler, J.; DiGiovanni, J. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling. Cancer Prev. Res. (Phila.), 2014, 7(6), 627-638.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0420] [PMID: 24691500]
[4]
Wang, J.; Ke, W.; Bao, R.; Hu, X.; Chen, F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review. Ann. N. Y. Acad. Sci., 2017, 1398(1), 83-98.
[http://dx.doi.org/10.1111/nyas.13375] [PMID: 28505392]
[5]
Srinivasan, K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PharmaNutrition, 2017, 5(1), 18-28.
[http://dx.doi.org/10.1016/j.phanu.2017.01.001]
[6]
Rodrigues, F.A.P.; Santos, A.D.D.C.; de Medeiros, P.H.Q.S.; Prata, M.M.G.; Santos, T.C.S.; da Silva, J.A.; Brito, G.A.C.; Dos Santos, A.A.; Silveira, E.R.; Lima, A.Â.M.; Havt, A. Gingerol suppresses sepsis-induced acute kidney injury by modulating methylsulfonylmethane and dimethylamine production. Sci. Rep., 2018, 8(1), 12154.
[http://dx.doi.org/10.1038/s41598-018-30522-6] [PMID: 30108263]
[7]
Liu, Y.; Whelan, R.J.; Pattnaik, B.R.; Ludwig, K.; Subudhi, E.; Rowland, H.; Claussen, N.; Zucker, N.; Uppal, S.; Kushner, D.M.; Felder, M.; Patankar, M.S.; Kapur, A. Terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PLoS One, 2012, 7(12), ,e53178.
[8]
Ray, A.; Vasudevan, S.; Sengupta, S. 6-shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of notch signaling pathway and induction of autophagic cell death. PLoS One, 2015, 10(9), ,e0137614.
[9]
Akimoto, M.; Iizuka, M.; Kanematsu, R.; Yoshida, M.; Takenaga, K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One, 2015, 10(5), ,e0126605.
[http://dx.doi.org/10.1371/journal.pone.0126605]
[10]
Yusof, K.M.; Makpol, S.; Fen, L.S.; Jamal, R.; Wan Ngah, W.Z. Suppression of colorectal cancer cell growth by combined treatment of 6-gingerol and γ-tocotrienol via alteration of multiple signalling pathways. J. Nat. Med., 2019, 73(4), 745-760.
[http://dx.doi.org/10.1007/s11418-019-01323-6] [PMID: 31177355]
[11]
Hu, R.; Zhou, P.; Peng, Y.B.; Xu, X.; Ma, J.; Liu, Q.; Zhang, L.; Wen, X.D.; Qi, L.W.; Gao, N.; Li, P. 6-shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PLoS One, 2012, 7(6), e39664.
[12]
Li, J.; Wang, S.; Yao, L.; Ma, P.; Chen, Z.; Han, T.L.; Yuan, C.; Zhang, J.; Jiang, L.; Liu, L.; Ke, D.; Li, C.; Yamahara, J.; Li, Y.; Wang, J. 6-gingerol ameliorates age-related hepatic steatosis: Association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction. Toxicol. Appl. Pharmacol., 2019, 362, 125-135.
[http://dx.doi.org/10.1016/j.taap.2018.11.001] [PMID: 30408433]
[13]
Wang, C.Z.; Qi, L.W.; Yuan, C.S. Cancer chemoprevention effects of ginger and its active constituents: Potential for new drug discovery. Am. J. Chin. Med., 2015, 43(7), 1351-1363.
[http://dx.doi.org/10.1142/S0192415X15500767] [PMID: 26477795]
[14]
Shao, X.; Lv, L.; Parks, T.; Wu, H.; Ho, C.T.; Sang, S. Quantitative analysis of ginger components in commercial products using liquid chromatography with electrochemical array detection. J. Agric. Food Chem., 2010, 58(24), 12608-12614.
[http://dx.doi.org/10.1021/jf1029256] [PMID: 21090746]
[15]
Shukla, Y.; Singh, M. Cancer preventive properties of ginger: A brief review. Food Chem. Toxicol., 2007, 45(5), 683-690.
[http://dx.doi.org/10.1016/j.fct.2006.11.002] [PMID: 17175086]
[16]
Tan, B.S.; Kang, O.; Mai, C.W.; Tiong, K.H.; Khoo, A.S.B.; Pichika, M.R.; Bradshaw, T.D.; Leong, C.O. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of Peroxisomal Proliferator Activated Receptor γ (PPARγ). Cancer Lett., 2013, 336(1), 127-139.
[http://dx.doi.org/10.1016/j.canlet.2013.04.014] [PMID: 23612072]
[17]
Biber Muftuler, F.Z.; Yurt Kilcar, A.; Unak, P. A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals. J. Radioanal. Nucl. Chem., 2015, 306(1), 1-9.
[http://dx.doi.org/10.1007/s10967-015-4082-9]
[18]
Jeong, C.H.H.; Bode, A.M.; Pugliese, A.; Cho, Y.Y.; Kim, H.G.; Shim, J.H.; Jeon, Y.J.; Li, H.; Jiang, H.; Dong, Z. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res., 2009, 69(13), 5584-5591.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0491] [PMID: 19531649]
[19]
Wu, C.H.; Hong, B.H.; Ho, C.T.; Yen, G.C. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. J. Agric. Food Chem., 2015, 63(9), 2432-2441.
[http://dx.doi.org/10.1021/acs.jafc.5b00002] [PMID: 25686711]
[20]
Rhode, J.; Fogoros, S.; Zick, S.; Wahl, H.; Griffith, K.A.; Huang, J.; Liu, J.R. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement. Altern. Med., 2007, 7, 44.
[http://dx.doi.org/10.1186/1472-6882-7-44] [PMID: 18096028]
[21]
de Lima, R.M.T.; Dos Reis, A.C.; de Menezes, A.P.M.; Santos, J.V.O.; Filho, J.W.G.O.; Ferreira, J.R.O.; de Alencar, M.V.O.B.; da Mata, A.M.O.F.; Khan, I.N.; Islam, A.; Uddin, S.J.; Ali, E.S.; Islam, M.T.; Tripathi, S.; Mishra, S.K.; Mubarak, M.S.; Melo-Cavalcante, A.A.C. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother. Res., 2018, 32(10), 1885-1907.
[http://dx.doi.org/10.1002/ptr.6134] [PMID: 30009484]
[22]
Ozkan, B.M.; Muftuler, F.Z.B.; Kilcar, A.Y.; Medine, E.I.; Unak, P. Isolation of hydroxytyrosol from olive leaves extract, radioiodination and investigation of bioaffinity using in vivo/in vitro methods. Radiochim. Acta, 2013, 101, 585-593.
[23]
Dervis, E.; Yurt Kilcar, A.; Medine, E.I.; Tekin, V.; Cetkin, B.; Uygur, E.; Muftuler, F.Z.B. In vitro incorporation of radioiodinated eugenol on adenocarcinoma cell lines (Caco2, MCF7, and PC3). Cancer Biother. Radiopharm., 2017, 32(3), 75-81.
[http://dx.doi.org/10.1089/cbr.2017.2181] [PMID: 28358602]
[24]
Ünak, T.; Akgün, Z.; Yildirim, Y.; Duman, Y.; Erenel, G. Self-radioiodination of iodogen. Appl. Radiat. Isot., 2001, 54(5), 749-752.
[http://dx.doi.org/10.1016/S0969-8043(00)00337-7] [PMID: 11258523]
[25]
Gullett, N.P.; Ruhul Amin, A.R.M.; Bayraktar, S.; Pezzuto, J.M.; Shin, D.M.; Khuri, F.R.; Aggarwal, B.B.; Surh, Y-J.; Kucuk, O. Cancer prevention with natural compounds. Semin. Oncol., 2010, 37(3), 258-281.
[http://dx.doi.org/10.1053/j.seminoncol.2010.06.014] [PMID: 20709209]
[26]
Lee, H.S.; Seo, E.Y.; Kang, N.E.; Kim, W.K. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J. Nutr. Biochem., 2008, 19(5), 313-319.
[http://dx.doi.org/10.1016/j.jnutbio.2007.05.008] [PMID: 17683926]
[27]
Vemuri, S.K.; Banala, R.R.; Subbaiah, G.P.V.; Srivastava, S.K.; Reddy, A.V.G.; Malarvili, T. Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: A cell-based study. Egypt. J. Basic Appl. Sci., 2017, 4, 332-344.
[28]
Pan, M.H.; Hsieh, M.C.; Kuo, J.M.; Lai, C.S.; Wu, H.; Sang, S.; Ho, C.T. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol. Nutr. Food Res., 2008, 52(5), 527-537.
[http://dx.doi.org/10.1002/mnfr.200700157] [PMID: 18384088]
[29]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 2015, 117, 554-568.
[http://dx.doi.org/10.1016/j.phytochem.2015.07.012] [PMID: 26228533]
[30]
Fan, J.Z.; Yang, X.; Bi, Z.G. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells. Braz. J. Med. Biol. Res., 2015, 48(7), 637-643.
[http://dx.doi.org/10.1590/1414-431x20154494] [PMID: 25923459]
[31]
Loung, C-Y.; Rasmussen, A.N.; Hoskin, D.W. The phenolic gingerols and gingerol-derived shogaols: Features and properties related to the prevention and treatment of cancer and chronic inflammation. Polyphenols in Plants; Elsevier: Canada, 2019, pp. 395-405.
[http://dx.doi.org/10.1016/B978-0-12-813768-0.00024-4]
[32]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J-T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H-Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H-Y.; Lichtor, T.; Lin, L-T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35(Suppl.), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[33]
Wang, G.; Li, X.; Huang, F.; Zhao, J.; Ding, H.; Cunningham, C.; Coad, J.E.; Flynn, D.C.; Reed, E.; Li, Q.Q. Antitumor effect of β-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cell. Mol. Life Sci., 2005, 62(7-8), 881-893.
[http://dx.doi.org/10.1007/s00018-005-5017-3] [PMID: 15868411]
[34]
Li, F.; Nitteranon, V.; Tang, X.; Liang, J.; Zhang, G.; Parkin, K.L.; Hu, Q. In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem., 2012, 135(2), 332-337.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.145] [PMID: 22868095]
[35]
Bhattarai, S.; Tran, V.H.; Duke, C.C. The stability of gingerol and shogaol in aqueous solutions. J. Pharm. Sci., 2001, 90(10), 1658-1664.
[http://dx.doi.org/10.1002/jps.1116] [PMID: 11745724]
[36]
Naghsh, F. Nano drug delivery study of anticancer properties on ginger using QM/MM methods. Orient. J. Chem., 2015, 31, 465-478.
[http://dx.doi.org/10.13005/ojc/310156]
[37]
Ko, M.J.; Nam, H.H.; Chung, M.S. Conversion of 6-gingerol to 6-shogaol in ginger (Zingiber officinale) pulp and peel during subcritical water extraction. Food Chem., 2019, 270, 149-155.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.078] [PMID: 30174028]
[38]
Teng, H.; Seuseu, K.T.; Lee, W-Y.; Chen, L. Comparing the effects of microwave radiation on 6-gingerol and 6-shogaol from ginger rhizomes (Zingiber officinale Rosc). PLoS One, 2019, 14(6), ,e0214893.
[http://dx.doi.org/10.1371/journal.pone.0214893] [PMID: 31181065]
[39]
Satpati, D.; Korde, A.; Sarma, H.D.; Banerjee, S. Radiosynthesis and biological evaluation of 68Ga-labeled colchicine conjugates. Cancer Biother. Radiopharm., 2014, 29(6), 251-256.
[http://dx.doi.org/10.1089/cbr.2014.1621] [PMID: 24983126]
[40]
Pérez-Payá, E.; Orzáez, M.; Mondragón, L.; Wolan, D.; Wells, J.A.; Messeguer, A.; Vicent, M.J. Molecules that modulate Apaf-1 activity. Med. Res. Rev., 2011, 31(4), 649-675.
[http://dx.doi.org/10.1002/med.20198] [PMID: 20099266]
[41]
Soorya, B.; Dhanalakshmi, S. VLSI implementation of modified guided filter for real time video. ARPN J. Eng. Appl. Sci., 2015, 10(7), 3067-3071.
[42]
Ray, A.; Vasudevan, S.; Sengupta, S. 6-shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of notch signaling pathway and induction of autophagic cell death. PLoS One, 2015, 10(9), ,e0137614.
[43]
Nedungadi, D.; Binoy, A.; Pandurangan, N.; Pal, S.; Nair, B.G.; Mishra, N. 6-Shogaol induces caspase-independent paraptosis in cancer cells via proteasomal inhibition. Exp. Cell Res., 2018, 364(2), 243-251.
[http://dx.doi.org/10.1016/j.yexcr.2018.02.018] [PMID: 29462602]
[44]
Hsu, Y.L.; Chen, C.Y.; Hou, M.F.; Tsai, E.M.; Jong, Y.J.; Hung, C.H.; Kuo, P.L. 6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human breast cancer cells. Mol. Nutr. Food Res., 2010, 54(9), 1307-1317.
[http://dx.doi.org/10.1002/mnfr.200900125] [PMID: 20175081]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy