Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Recent Strategic Developments in the Use of Superdisintegrants for Drug Delivery

Author(s): Phuong H.L. Tran and Thao T.D. Tran*

Volume 26, Issue 6, 2020

Page: [701 - 709] Pages: 9

DOI: 10.2174/1381612826666200122124621

Price: $65

conference banner
Abstract

Improving drug bioavailability in the pharmaceutical field is a challenge that has attracted substantial interest worldwide. The controlled release of a drug can be achieved with a variety of strategies and novel materials in the field. In addition to the vast development of innovative materials for improving therapeutic effects and reducing side effects, the exploration of remarkable existing materials could encourage the discovery of diverse approaches for adapted drug delivery systems. Recently, superdisintegrants have been proposed for drug delivery systems as alternative approaches to maximize the efficiency of therapy. Although superdisintegrants are well known and used in solid dosage forms, studies on strategies for the development of drug delivery systems using superdisintegrants are lacking. Therefore, this study reviews the use of superdisintegrants in controlled drug release dosage formulations. This overview of superdisintegrants covers developed strategies, types (including synthetic and natural materials), dosage forms and techniques and will help to improve drug delivery systems.

Keywords: Superdisintegrant, controlled release, drug delivery system, nanoparticle, solid dosage form, drug bioavailability.

« Previous
[1]
Varela MF, Kumar S. Strategies for discovery of new molecular targets for anti-infective drugs. Curr Opin Pharmacol 2019; 48: 57-68.
[http://dx.doi.org/10.1016/j.coph.2019.04.015] [PMID: 31146204]
[2]
Shams-ul-Hasan S.Jin H-Z, Abu-Izneid T, Rauf A, Ishaq M, Suleria HAR. Stress-driven discovery in the natural products: a gateway towards new drugs. Biomed Pharmacother 2019; 109: 459-67.
[http://dx.doi.org/10.1016/j.biopha.2018.10.173]
[3]
Campaniço A, Moreira R, Lopes F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur J Med Chem 2018; 150: 525-45.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.020] [PMID: 29549838 ]
[4]
Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017; 120: 11-9.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.021] [PMID: 26979921 ]
[5]
Molokanova E, Mercola M, Savchenko A. Bringing new dimensions to drug discovery screening: impact of cellular stimulation technologies. Drug Discov Today 2017; 22(7): 1045-55.
[http://dx.doi.org/10.1016/j.drudis.2017.01.015] [PMID: 28179145 ]
[6]
Cagil EM, Hameed O, Ozcan F. Production of a new platform based calixarene nanofiber for controlled release of the drugs. Mater Sci Eng C 2019; 100: 466-74.
[http://dx.doi.org/10.1016/j.msec.2019.03.038] [PMID: 30948082 ]
[7]
Ngo HV, Tran PHL, Lee BJ, Tran TTD. The roles of a surfactant in zein-HPMC blend solid dispersions for improving drug delivery. Int J Pharm 2019; 563: 169-73.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.009] [PMID: 30954672 ]
[8]
Wan T, Stylios GK, Giannoudi M, Giannoudis PV. Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA(PEG) for the controlled release of biopharmaceuticals for bone infections. Injury 2015; 46(Suppl. 8): S39-43.
[http://dx.doi.org/10.1016/S0020-1383(15)30053-X] [PMID: 26747917 ]
[9]
Tran CTM, Tran PHL, Tran TTD. pH-independent dissolution enhancement for multiple poorly water-soluble drugs by nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates. Drug Dev Ind Pharm 2019; 45(3): 514-9.
[http://dx.doi.org/10.1080/03639045.2018.1562466] [PMID: 30575412]
[10]
Tran PHL, Duan W, Lee B-J, Tran TTD. The use of zein in the controlled release of poorly water-soluble drugs. Int J Pharm 2019; 566: 557-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.018] [PMID: 31181306 ]
[11]
Tran TTD, Tran PHL. Controlled release film forming systems in drug delivery: the potential for efficient drug delivery. Pharmaceutics 2019; 11(6) E290
[http://dx.doi.org/10.3390/pharmaceutics11060290] [PMID: 31226748 ]
[12]
Safdar R, Omar AA, Arunagiri A, Regupathi I, Thanabalan M. Potential of chitosan and its derivatives for controlled drug release applications - A review. J Drug Deliv Sci Technol 2019; 49: 642-59.
[http://dx.doi.org/10.1016/j.jddst.2018.10.020]
[13]
Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted materials as advanced excipients for drug delivery systems. Biotechnol Annu Rev 2006; 12: 225-68.
[http://dx.doi.org/10.1016/S1387-2656(06)12007-4]
[14]
Liao W, Du Y, Zhang C, et al. Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater 2019; 86: 1-14.
[http://dx.doi.org/10.1016/j.actbio.2018.12.045] [PMID: 30597259 ]
[15]
Tran TTD, Tran PHL. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics 2019; 11(7) E325
[http://dx.doi.org/10.3390/pharmaceutics11070325] [PMID: 31295947]
[16]
Han HJ, Ekweremadu C, Patel N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J Drug Deliv Sci Technol 2019; 52: 1051-60.
[http://dx.doi.org/10.1016/j.jddst.2019.05.024]
[17]
Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013; 65(1): 104-20.
[http://dx.doi.org/10.1016/j.addr.2012.10.003] [PMID: 23088863 ]
[18]
Liu Y-L, Chen D, Shang P, Yin D-C. A review of magnet systems for targeted drug delivery. J Control Release 2019; 302: 90-104.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.031] [PMID: 30946854 ]
[19]
Sharma P, Mehta M, Dhanjal DS, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact 2019; 309 108720
[http://dx.doi.org/10.1016/j.cbi.2019.06.033] [PMID: 31226287 ]
[20]
Buddolla AL, Kim S. Recent insights into the development of nucleic acid-based nanoparticles for tumor-targeted drug delivery. Colloids Surf B Biointerfaces 2018; 172: 315-22.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.057] [PMID: 30176511]
[21]
Sharma G, Sharma AR, Lee S-S, Bhattacharya M, Nam J-S, Chakraborty C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int J Pharm 2019; 559: 360-72.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.056] [PMID: 30721725 ]
[22]
Liyanage PY, Hettiarachchi SD, Zhou Y, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1871(2): 419-33.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.006] [PMID: 31034927]
[23]
Dinh HTT, Tran PHL, Duan W, Lee B-J, Tran TTD. Nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates for dissolution enhancement of poorly water-soluble drugs. Int J Pharm 2017; 533(1): 93-8.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.065] [PMID: 28951346 ]
[24]
Ngo HV, Tran PHL, Lee B-J, Tran TTD. Development of film-forming gel containing nanoparticles for transdermal drug delivery. Nanotechnology 2019; 30(41) 415102
[http://dx.doi.org/10.1088/1361-6528/ab2e29] [PMID: 31261146 ]
[25]
Phan NH, Ly TT, Pham MN, et al. A Comparison of fucoidan conjugated to paclitaxel and curcumin for the dual delivery of cancer therapeutic agents. Anticancer Agents Med Chem 2018; 18(9): 1349-55.
[http://dx.doi.org/10.2174/1871520617666171121125845] [PMID: 29173183 ]
[26]
Guo H, White JC, Wang Z, Xing B. Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science & Health 2018; 6: 77-83.
[http://dx.doi.org/10.1016/j.coesh.2018.07.009]
[27]
Irfan SA, Razali R. KuShaari K, Mansor N, Azeem B, Ford Versypt AN. A review of mathematical modeling and simulation of controlled-release fertilizers. J Control Release 2018; 271: 45-54.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.017] [PMID: 29274697 ]
[28]
Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Systems for stimuli-controlled release: materials and applications. J Control Release 2019; 294: 355-71.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.038] [PMID: 30590097 ]
[29]
Eghbal N, Choudhary R. Complex coacervation: encapsulation and controlled release of active agents in food systems. LWT 2018; 90: 254-64.
[http://dx.doi.org/10.1016/j.lwt.2017.12.036]
[30]
McClements DJ, Li Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci 2010; 159(2): 213-28.
[http://dx.doi.org/10.1016/j.cis.2010.06.010] [PMID: 20638649]
[31]
Mastromatteo M, Mastromatteo M, Conte A, Del Nobile MA. Advances in controlled release devices for food packaging applications. Trends Food Sci Technol 2010; 21(12): 591-8.
[http://dx.doi.org/10.1016/j.tifs.2010.07.010]
[32]
Pothakamury UR, Barbosa-Cánovas GV. Fundamental aspects of controlled release in foods. Trends Food Sci Technol 1995; 6(12): 397-406.
[http://dx.doi.org/10.1016/S0924-2244(00)89218-3]
[33]
Ju J, Chen X, Xie Y, et al. Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci Technol 2019; 92: 22-32.
[http://dx.doi.org/10.1016/j.tifs.2019.08.005]
[34]
Yassin S, Goodwin DJ, Anderson A, et al. The disintegration process in microcrystalline cellulose based tablets, part 1: influence of temperature, porosity and superdisintegrants. J Pharm Sci 2015; 104(10): 3440-50.
[http://dx.doi.org/10.1002/jps.24544]
[35]
Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur J Pharm Biopharm 2017; 111: 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.004] [PMID: 27845182 ]
[36]
El-Barghouthi M, Eftaiha A, Rashid I, Al-Remawi M, Badwan A. A novel superdisintegrating agent made from physically modified chitosan with silicon dioxide. Drug Dev Ind Pharm 2008; 34(4): 373-83.
[http://dx.doi.org/10.1080/03639040701657792] [PMID: 18401779 ]
[37]
Hosseini A, Körber M, Bodmeier R. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile. Int J Pharm 2013; 457(2): 503-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.042] [PMID: 23892153 ]
[38]
Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci 2015; 75: 2-9.
[http://dx.doi.org/10.1016/j.ejps.2015.02.015] [PMID: 25736528 ]
[39]
Pabari RM, Ramtoola Z. Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets. Int J Pharm 2012; 430(1-2): 18-25.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.021] [PMID: 22465631]
[40]
Mizumoto T, Masuda Y, Yamamoto T, Yonemochi E, Terada K. Formulation design of a novel fast-disintegrating tablet. Int J Pharm 2005; 306(1-2): 83-90.
[http://dx.doi.org/10.1016/j.ijpharm.2005.09.009] [PMID: 16257154]
[41]
Ekmekciyan N, Tuglu T, El-Saleh F, Muehlenfeld C, Stoyanov E, Quodbach J. Competing for water: a new approach to understand disintegrant performance. Int J Pharm 2018; 548(1): 491-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.025] [PMID: 30018010 ]
[42]
Tran PHL, Duan W, Lee BJ, Tran TTD. Current designs of polymer blends in solid dispersions for improving drug bioavailability. Curr Drug Metab 2018; 19(13): 1111-8.
[http://dx.doi.org/10.2174/1389200219666180628171100] [PMID: 29956619 ]
[43]
Barmpalexis P, Syllignaki P, Kachrimanis K. A study of water uptake by selected superdisintegrants from the sub-molecular to the particulate level. Pharm Dev Technol 2018; 23(5): 476-87.
[http://dx.doi.org/10.1080/10837450.2017.1280827] [PMID: 28125917]
[44]
Desai PM, Liew CV, Heng PWS. Review of disintegrants and the disintegration phenomena. J Pharm Sci 2016; 105(9): 2545-55.
[http://dx.doi.org/10.1016/j.xphs.2015.12.019] [PMID: 27506604 ]
[45]
Quodbach J, Kleinebudde P. A critical review on tablet disintegration. Pharm Dev Technol 2016; 21(6): 763-74.
[PMID: 25975586]
[46]
Sheshala R, Khan N, Chitneni M, Darwis Y. Formulation and in vivo evaluation of ondansetron orally disintegrating tablets using different superdisintegrants. Arch Pharm Res 2011; 34(11): 1945-56.
[http://dx.doi.org/10.1007/s12272-011-1115-y] [PMID: 22139694 ]
[47]
Shah U, Augsburger L. Evaluation of the functional equivalence of crospovidone NF from different sources. I. Physical characterization. Pharm Dev Technol 2001; 6(1): 39-51.
[http://dx.doi.org/10.1081/PDT-100000012] [PMID: 11247274]
[48]
Kornblum SS, Stoopak SB. A new tablet disintegrating agent: cross-linked polyvinylpyrrolidone. J Pharm Sci 1973; 62(1): 43-9.
[http://dx.doi.org/10.1002/jps.2600620107] [PMID: 4682932 ]
[49]
Shiyani B, Gattani S, Surana S. Formulation and evaluation of bi-layer tablet of metoclopramide hydrochloride and ibuprofen. AAPS PharmSciTech 2008; 9(3): 818-27.
[http://dx.doi.org/10.1208/s12249-008-9116-y] [PMID: 18612830 ]
[50]
Gohel M, Parikh R, Brahmbhatt B, Shah A. Improving the tablet characteristics and dissolution profile of ibuprofen by using a novel coprocessed superdisintegrant: a technical note. AAPS PharmSciTech 2007; 8(1): 13.
[http://dx.doi.org/10.1208/pt0801013] [PMID: 17408213 ]
[51]
Shimizu T, Sugaya M, Nakano Y, et al. Formulation study for lansoprazole fast-disintegrating tablet. III. Design of rapidly disintegrating tablets. Chem Pharm Bull (Tokyo) 2003; 51(10): 1121-7.
[http://dx.doi.org/10.1248/cpb.51.1121] [PMID: 14519914]
[52]
Frömming KH, Ditter W, Horn D. Sorption properties of cross-linked insoluble polyvinylpyrrolidone. J Pharm Sci 1981; 70(7): 738-43.
[http://dx.doi.org/10.1002/jps.2600700707] [PMID: 7264917 ]
[53]
Desai PM, Liew CV, Heng PWS. Understanding disintegrant action by visualization. J Pharm Sci 2012; 101(6): 2155-64.
[http://dx.doi.org/10.1002/jps.23119] [PMID: 22422140 ]
[54]
Bolhuis GK, Arends-Scholte AW, Stuut GJ, De Vries J. Disintegration efficiency of sodium starch glycolates, prepared from different native starches. Eur J Pharm Biopharm 1994; 40(5): 317-20.
[55]
Young PM, Edge S, Staniforth JN, Steele DF, Price R. Dynamic vapor sorption properties of sodium starch glycolate disintegrants. Pharm Dev Technol 2005; 10(2): 249-59.
[http://dx.doi.org/10.1081/PDT-54448] [PMID: 15926674]
[56]
Augsburger LL, Brzeczko AW, Shah U, Jung HA. Superdisintegrants: characterization and function Encyclopedia of Pharmaceutical Science and Technology, Six Volume Set. Print 2013; pp. 3440-63.
[57]
Moreton RC. Disintegrants in tableting. In: Pharmaceutical Dosage Forms-Tablets . 2008; pp. 233-66.
[http://dx.doi.org/10.3109/9781420020298-7]
[58]
Amelian A, Wasilewska K, Wesoły M, Ciosek-Skibińska P, Winnicka K. Taste-masking assessment of orally disintegrating tablets and lyophilisates with cetirizine dihydrochloride microparticles. Saudi Pharm J 2017; 25(8): 1144-50.
[http://dx.doi.org/10.1016/j.jsps.2017.06.001] [PMID: 30166902]
[59]
Gulsun T, Akdag Cayli Y, Izat N, Cetin M, Oner L, Sahin S. Development and evaluation of terbutaline sulfate orally disintegrating tablets by direct compression and freeze drying methods. J Drug Deliv Sci Technol 2018; 46: 251-8.
[http://dx.doi.org/10.1016/j.jddst.2018.05.014]
[60]
Türkmen Ö, Ay Şenyiğit Z, Baloğlu E. Formulation and evaluation of fexofenadine hydrochloride orally disintegrating tablets for pediatric use. J Drug Deliv Sci Technol 2018; 43: 201-10.
[http://dx.doi.org/10.1016/j.jddst.2017.10.008]
[61]
Hoffmann A, Daniels R. Ultra-fast disintegrating ODTs comprising viable probiotic bacteria and HPMC as a mucoadhesive. Eur J Pharm Biopharm 2019; 139: 240-5.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.022] [PMID: 30946916 ]
[62]
Patel S, Patel N, Misra M, Joshi A. Controlled-release domperidone pellets compressed into fast disintegrating tablets forming a multiple-unit pellet system (MUPS). J Drug Deliv Sci Technol 2018; 45: 220-9.
[http://dx.doi.org/10.1016/j.jddst.2017.12.015]
[63]
Husseiny RA, Abu Lila AS, Abdallah MH, El-ghamry HA. Fast disintegrating tablet of Valsartan for the treatment of pediatric hypertension: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2018; 43: 194-200.
[http://dx.doi.org/10.1016/j.jddst.2017.10.014]
[64]
Pahwa R, Gupta N. Superdisintegrants in the development of orally disintegrating tablets: a review. Int J Pharm Sci Res 2010; 2: 2767-80.
[65]
Remya K, Beena P, Bijesh P, Sheeba A. Formulation development, evaluation and comparative study of effects of super disintegrants in cefixime oral disintegrating tablets. J Young Pharm 2010; 2(3): 234-9.
[http://dx.doi.org/10.4103/0975-1483.66794] [PMID: 21042477 ]
[66]
Battu SK, Repka MA, Majumdar S, Rao YM. Formulation and evaluation of rapidly disintegrating fenoverine tablets: effect of superdisintegrants. Drug Dev Ind Pharm 2007; 33(11): 1225-32.
[PMID: 18058319]
[67]
Sharma D. Formulation development and evaluation of fast disintegrating tablets of salbutamol sulphate for respiratory disorders. ISRN Pharm 2013; 2013 674507
[http://dx.doi.org/10.1155/2013/674507] [PMID: 23956881 ]
[68]
Olah I, Lasher J, Regdon G, Pintye-Hodi K, Baki G, Sovany T. Evaluating superdisintegrants for their performance in orally disintegrating tablets containing lysozyme enzyme. J Drug Deliv Sci Technol 2019; 49: 396-404.
[http://dx.doi.org/10.1016/j.jddst.2018.12.012]
[69]
Bisharat L, AlKhatib HS, Muhaissen S, et al. The influence of ethanol on superdisintegrants and on tablets disintegration. Eur J Pharm Sci 2019; 129: 140-7.
[http://dx.doi.org/10.1016/j.ejps.2019.01.004] [PMID: 30630089 ]
[70]
Pawar H, Varkhade C. Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant. Int J Biol Macromol 2014; 69: 52-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.019] [PMID: 24854213 ]
[71]
Pawar H, Varkhade C, Jadhav P, Mehra K. Development and evaluation of orodispersible tablets using a natural polysaccharide isolated from Cassia tora seeds. Integr Med Res 2014; 3(2): 91-8.
[http://dx.doi.org/10.1016/j.imr.2014.03.002] [PMID: 28664083 ]
[72]
Kumar MU, Babu MK. Design and evaluation of fast dissolving tablets containing diclofenac sodium using fenugreek gum as a natural superdisintegrant. Asian Pac J Trop Biomed 2014; 4(Suppl. 1): S329-34.
[http://dx.doi.org/10.12980/APJTB.4.2014B672] [PMID: 25183106 ]
[73]
Khampeng S, Otsuka M, Peerapattana J. A novel tablet disintegrant from Ocimum canum seeds. J Drug Deliv Sci Technol 2019; 51: 18-25.
[http://dx.doi.org/10.1016/j.jddst.2019.02.012]
[74]
Sadeghi M, Hemmati S, Salehi R, Solhi M, Ghorbani M, Hamishehkar H. Leucine-grafted starch as a new superdisintegrant for the formulation of domperidone tablets. J Drug Deliv Sci Technol 2019; 50: 136-44.
[http://dx.doi.org/10.1016/j.jddst.2019.01.021]
[75]
Berardi A, Bisharat L, Blaibleh A, Pavoni L, Cespi M. A Simple and inexpensive image analysis technique to study the effect of disintegrants concentration and diluents type on disintegration. J Pharm Sci 2018; 107(10): 2643-52.
[http://dx.doi.org/10.1016/j.xphs.2018.06.008] [PMID: 29935295]
[76]
Delalonde M, Fitouri R, Ruiz E, Bataille B, Sharkawi T. Impact of physicochemical environment on the super disintegrant functionality of cross-linked carboxymethyl sodium starch: insight on formulation precautions. AAPS PharmSciTech 2015; 16(2): 407-12.
[http://dx.doi.org/10.1208/s12249-014-0121-z] [PMID: 25348810 ]
[77]
Quodbach J, Moussavi A, Tammer R, Frahm J, Kleinebudde P. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging. J Pharm Sci 2014; 103(1): 249-55.
[http://dx.doi.org/10.1002/jps.23789] [PMID: 24475490 ]
[78]
Suryadevara V, Lankapalli SR, Danda LH, Pendyala V, Katta V. Studies on jackfruit seed starch as a novel natural superdisintegrant for the design and evaluation of irbesartan fast dissolving tablets. Integr Med Res 2017; 6(3): 280-91.
[http://dx.doi.org/10.1016/j.imr.2017.04.001] [PMID: 28951842 ]
[79]
Ispas-Szabo P, De Koninck P, Calinescu C, Mateescu MA. Carboxymethyl starch excipients for drug chronodelivery. AAPS PharmSciTech 2017; 18(5): 1673-82.
[http://dx.doi.org/10.1208/s12249-016-0634-8] [PMID: 27686941]
[80]
Elvira C, Mano JF, San Román J, Reis RL. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 2002; 23(9): 1955-66.
[http://dx.doi.org/10.1016/S0142-9612(01)00322-2] [PMID: 11996036]
[81]
Sadeghi M, Hemmati S, Hamishehkar H. Synthesis of a novel superdisintegrant by starch derivatization with polysuccinimide and its application for the development of Ondansetron fast dissolving tablet. Drug Dev Ind Pharm 2016; 42(5): 769-75.
[http://dx.doi.org/10.3109/03639045.2015.1075029]
[82]
Balasubramaniam J, Bee T. The influence of superdisintegrant choice on the rate of drug dissolution. Pharmaceutical Technology Europe 2009; 21(9): 44-9.
[83]
Tran TTD, Tran PHL. Perspectives on strategies using swellable polymers in solid dispersions for controlled drug release. Curr Pharm Des 2017; 23(11): 1639-48.
[http://dx.doi.org/10.2174/1381612822666161021152932] [PMID: 27774901 ]
[84]
Chowdary KPR, Rao SS. Investigation of dissolution enhancement of itraconazole by solid dispersion in superdisintegrants. Drug Dev Ind Pharm 2000; 26(11): 1207-11.
[http://dx.doi.org/10.1081/DDC-100100993] [PMID: 11068695]
[85]
Aboud HM, Ali AA, Abd Elbary A. Formulation and optimization of tenoxicam orodispersible tablets by solid deposition technique. J Drug Deliv Sci Technol 2012; 22(6): 555-61.
[http://dx.doi.org/10.1016/S1773-2247(12)50096-1]
[86]
Srinarong P, Faber JH, Visser MR, Hinrichs WLJ, Frijlink HW. Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants. Eur J Pharm Biopharm 2009; 73(1): 154-61.
[http://dx.doi.org/10.1016/j.ejpb.2009.05.006] [PMID: 19465121]
[87]
Spireas S. Liquisolid systems and methods of preparing same.United States patent US6423339 2002.
[88]
Sharma V, Pathak K. Liquisolid system of paclitaxel using modified polysaccharides: In vitro cytotoxicity, apoptosis study, cell cycle analysis, in vitro mitochondrial membrane potential assessment, and pharmacokinetics. Int J Biol Macromol 2019; 137: 20-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.188] [PMID: 31252010]
[89]
Lu M, Xing H, Jiang J, et al. Liquisolid technique and its applications in pharmaceutics. Asian J Pharm Sci 2017; 12(2): 115-23.
[90]
Mamidi HK, Mishra SM, Rohera BD. Determination of maximum flowable liquid-loading potential of Neusilin® US2 and investigation of compressibility and compactibility of its liquisolid blends with PEG (400). J Drug Deliv Sci Technol 2019; 54101285
[http://dx.doi.org/10.1016/j.jddst.2019.101285]
[91]
Vraníková B, Pavloková S, Gajdziok J. Experimental design for determination of effects of superdisintegrant combinations on liquisolid system properties. J Pharm Sci 2017; 106(3): 817-25.
[http://dx.doi.org/10.1016/j.xphs.2016.11.002] [PMID: 27923491]
[92]
Kulkarni AS, Aloorkar NH, Mane MS, Gaja JB. Liquisolid systems: a review. Int J Pharm Sci Nanotech 2010; 3(1): 795-802.
[93]
Pavani E, Noman S, Syed IA. Liquisolid technique based sustained release tablet of trimetazidine dihydrochloride. Drug Invention Today 2013; 5(4): 302-10.
[http://dx.doi.org/10.1016/j.dit.2013.08.006]
[94]
Nokhodchi A, Aliakbar R, Desai S, Javadzadeh Y. Liquisolid compacts: the effect of cosolvent and HPMC on theophylline release. Colloids Surf B Biointerfaces 2010; 79(1): 262-9.
[http://dx.doi.org/10.1016/j.colsurfb.2010.04.008] [PMID: 20451361 ]
[95]
Vraníková B, Gajdziok J. Liquisolid systems and aspects influencing their research and development. Acta Pharm 2013; 63(4): 447-65.
[http://dx.doi.org/10.2478/acph-2013-0034] [PMID: 24451071 ]
[96]
Fahmy RH, Kassem MA. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm 2008; 69(3): 993-1003.
[http://dx.doi.org/10.1016/j.ejpb.2008.02.017] [PMID: 18396390]
[97]
Komala DR, Janga KY, Jukanti R, Bandari S, Vijayagopal M. Competence of raloxifene hydrochloride loaded liquisolid compacts for improved dissolution and intestinal permeation. J Drug Deliv Sci Technol 2015; 30: 232-41.
[http://dx.doi.org/10.1016/j.jddst.2015.10.020]
[98]
Spireas S, Sadu S. Enhancement of prednisolone dissolution properties using liquisolid compacts. Int J Pharm 1998; 166(2): 177-88.
[http://dx.doi.org/10.1016/S0378-5173(98)00046-5]
[99]
El-Sayyad NME-M, Badawi A, Abdullah ME, Abdelmalak NS. Dissolution enhancement of leflunomide incorporating self emulsifying drug delivery systems and liquisolid concepts. Bull Fac Pharm Cairo Univ 2017; 55(1): 53-62.
[http://dx.doi.org/10.1016/j.bfopcu.2017.02.001]
[100]
Hentzschel CM, Alnaief M, Smirnova I, Sakmann A, Leopold CS. Enhancement of griseofulvin release from liquisolid compacts. Eur J Pharm Biopharm 2012; 80(1): 130-5.
[http://dx.doi.org/10.1016/j.ejpb.2011.08.001] [PMID: 21846502]
[101]
Sayyad FJ, Tulsankar SL, Kolap UB. Design and development of liquisolid compact of candesartan cilexetil to enhance dissolution. J Pharm Res 2013; 7(5): 381-8.
[http://dx.doi.org/10.1016/j.jopr.2013.05.012]
[102]
Elkordy AA, Essa EA, Dhuppad S, Jammigumpula P. Liquisolid technique to enhance and to sustain griseofulvin dissolution: effect of choice of non-volatile liquid vehicles. Int J Pharm 2012; 434(1-2): 122-32.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.072] [PMID: 22677418 ]
[103]
Said Suliman A, Anderson RJ, Elkordy AA. Preparation of novel optimum liquisolid compacts via incorporating water granulation process to enhance the powder characterizations and dissolution behavior of a poorly soluble drug. Norfloxacin Powder Technol 2019; 354: 259-70.
[http://dx.doi.org/10.1016/j.powtec.2019.05.071]
[104]
Jaipakdee N, Limpongsa E, Sripanidkulchai BO, Piyachaturawat P. Preparation of Curcuma comosa tablets using liquisolid techniques: in vitro and in vivo evaluation. Int J Pharm 2018; 553(1-2): 157-68.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.031] [PMID: 30316793]
[105]
Chella N, Shastri N, Tadikonda RR. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharm Sin B 2012; 2(5): 502-8.
[http://dx.doi.org/10.1016/j.apsb.2012.07.005]
[106]
Pezzini BR, Beringhs AO, Ferraz HG, Silva MAS, Stulzer HK, Sonaglio D. Liquisolid technology applied to pellets: evaluation of the feasibility and dissolution performance using felodipine as a model drug. Chem Eng Res Des 2016; 110: 62-9.
[http://dx.doi.org/10.1016/j.cherd.2016.01.037]
[107]
Anzilaggo D, O’Reilly Beringhs A, Pezzini BR, Sonaglio D, Stulzer HK. Liquisolid systems: understanding the impact of drug state (solution or dispersion), nonvolatile solvent and coating material on simvastatin apparent aqueous solubility and flowability. Colloids Surf B Biointerfaces 2019; 175: 36-43.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.044] [PMID: 30517903]
[108]
De Espíndola B, Beringhs AOR, Sonaglio D, et al. Liquisolid pellets: a pharmaceutical technology strategy to improve the dissolution rate of ritonavir. Saudi Pharm J 2019; 27(5): 702-12.
[http://dx.doi.org/10.1016/j.jsps.2019.04.005] [PMID: 31297025 ]
[109]
Susarla R, Afolabi A, Patel D, Bilgili E, Davé RN. Novel use of superdisintegrants as viscosity enhancing agents in biocompatible polymer films containing griseofulvin nanoparticles. Powder Technol 2015; 285: 25-33.
[http://dx.doi.org/10.1016/j.powtec.2015.06.024]
[110]
Mangal M, Thakral S, Goswami M, Ghai P. Superdisintegrants: an updated review. Int J Pharm Pharm Sci Res 2012; 2(2): 26-35.
[111]
Omidian H, Park K. Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol 2008; 18(2): 83-93.
[http://dx.doi.org/10.1016/S1773-2247(08)50016-5]
[112]
Azad M, Afolabi A, Bhakay A, Leonardi J, Davé R, Bilgili E. Enhanced physical stabilization of fenofibrate nanosuspensions via wet co-milling with a superdisintegrant and an adsorbing polymer. Eur J Pharm Biopharm 2015; 94: 372-85.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.028] [PMID: 26079832 ]
[113]
Quadir A, Kolter K. A comparative study of current superdisintegrants 2006. Pharm Tech 2006.(5):
[114]
Zhang Y. Fine particle croscarmellose and uses thereof Europe EP2515879A2, . 2011.
[115]
Azad MA, Afolabi A, Patel N, Davé R, Bilgili E. Preparation of stable colloidal suspensions of superdisintegrants via wet stirred media milling. Particuology 2014; 14: 76-82.
[http://dx.doi.org/10.1016/j.partic.2013.07.008]
[116]
Bilgili E, Hamey R, Scarlett B. Nano-milling of pigment agglomerates using a wet stirred media mill: elucidation of the kinetics and breakage mechanisms. Chem Eng Sci 2006; 61(1): 149-57.
[http://dx.doi.org/10.1016/j.ces.2004.11.063]
[117]
Stenger F, Mende S, Schwedes J, Peukert W. The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills. Powder Technol 2005; 156(2-3): 103-10.
[http://dx.doi.org/10.1016/j.powtec.2005.04.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy