Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis and Biological Evaluation of Novel 4-phenoxypyridine Derivatives Containing Semicarbazones Moiety as Potential c-Met Kinase Inhibitors

Author(s): Jun Li, Jie Li, Jiaojiao Zhang, Jiantao Shi, Shi Ding, Yajing Liu, Ye Chen* and Ju Liu*

Volume 20, Issue 5, 2020

Page: [559 - 570] Pages: 12

DOI: 10.2174/1871520620666200101143307

Price: $65

conference banner
Abstract

Background: The Hepatocyte Growth Factor Receptor (HGFR) c-Met is over-expressed and/or mutated in various human tumor types. Dysregulation of c-Met/HGF signaling pathway affects cell proliferation, survival and motility, leading to tumor growth, angiogenesis, and metastasis. Therefore, c-Met has become an attractive target for cancer therapy.

Objective: This study is aimed to evaluate a new series of 4-phenoxypyridine derivatives containing semicarbazones moiety for its cytotoxicity.

Methods: A series of novel 4-phenoxypyridines containing semicarbazone moieties were synthesized and evaluated for their in vitro cytotoxic activities against MKN45 and A549 cancer cell lines and some selected compounds were further examined for their inhibitory activity against c-Met kinase. In order to evaluate the mechanism of cytotoxic activity of compound 24, cell cycle analysis, Annexin V/PI staining assay, AO/EB assay, wound-healing assay and docking analysis with c-Met were performed.

Results: The results indicated that most of the compounds showed moderate to good antitumor activity. The compound 28 showed well cytotoxic activity against MKN45 and A549 cell lines with IC50 values of 0.25μM and 0.67μM, respectively. Compound 24 showed good activity on c-Met and its IC50 value was 0.093μM.

Conclusion: Their preliminary Structure-Activity Relationships (SARs) studies indicated that electronwithdrawing groups on the terminal phenyl rings are beneficial for improving the antitumor activity. Treatments of MKN45 cells with compound 24 resulted in cell cycle arrest in G2/M phase and induced apoptosis in a dose-dependent manner. In addition, AO/EB assays indicated 24 induced dose-dependent apoptosis of A549 and MKN45 cells. Wound-healing assay results indicated that compound 24 strongly inhibited A549 cell motility.

Keywords: Synthesis, 4-phenoxypyridines, semicarbazone moieties, cytotoxic activities, c-met inhibitors, antitumor mechanism.

Graphical Abstract
[1]
World Health Organization. World Cancer Day, 2017.http://www.who.int/cancer/world-cancer-day/2017/en/
[2]
You, W.K.; Sennino, B.; Williamson, C.W.; Falcón, B.; Hashizume, H.; Yao, L.C.; Aftab, D.T.; McDonald, D.M. VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res., 2011, 71(14), 4758-4768.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2527] [PMID: 21613405]
[3]
Hubbard, S.R.; Miller, W.T. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr. Opin. Cell Biol., 2007, 19(2), 117-123.
[http://dx.doi.org/10.1016/j.ceb.2007.02.010] [PMID: 17306972]
[4]
Izar, B.; Rotow, J.; Gainor, J.; Clark, J.; Chabner, B. Pharmacokinetics, clinical indications, and resistance mechanisms in molecular targeted therapies in cancer. Pharmacol. Rev., 2013, 65(4), 1351-1395.
[http://dx.doi.org/10.1124/pr.113.007807] [PMID: 24092887]
[5]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[6]
Grant, S.K. Therapeutic protein kinase inhibitors. Cell. Mol. Life Sci., 2009, 66(7), 1163-1177.
[http://dx.doi.org/10.1007/s00018-008-8539-7] [PMID: 19011754]
[7]
Sawyer, T.K. Cancer metastasis therapeutic targets and drug discovery: emerging small-molecule protein kinase inhibitors. Expert Opin. Investig. Drugs, 2004, 13(1), 1-19.
[http://dx.doi.org/10.1517/13543784.13.1.1] [PMID: 14680449]
[8]
Ko, B.; He, T.; Gadgeel, S.; Halmos, B. MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann. Transl. Med., 2017, 5(1), 4.
[http://dx.doi.org/10.21037/atm.2016.12.09] [PMID: 28164089]
[9]
Baldanzi, G.; Graziani, A. Physiological signaling and structure of the, HGF receptor MET. Biomedicines, 2014, 3(1), 1-31.
[http://dx.doi.org/10.3390/biomedicines3010001] [PMID: 28536396]
[10]
Huh, C.G.; Factor, V.M.; Sánchez, A.; Uchida, K.; Conner, E.A.; Thorgeirsson, S.S. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4477-4482.
[http://dx.doi.org/10.1073/pnas.0306068101] [PMID: 15070743]
[11]
Marano, L.; Chiari, R.; Fabozzi, A.; De Vita, F.; Boccardi, V.; Roviello, G.; Petrioli, R.; Marrelli, D.; Roviello, F.; Patriti, A. c-Met targeting in advanced gastric cancer: An open challenge. Cancer Lett., 2015, 365(1), 30-36.
[http://dx.doi.org/10.1016/j.canlet.2015.05.028] [PMID: 26049023]
[12]
Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1)(Suppl.), S7-S19.
[http://dx.doi.org/10.1177/1758834011422556] [PMID: 22128289]
[13]
Okuda, K.; Sasaki, H.; Yukiue, H.; Yano, M.; Fujii, Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci., 2008, 99(11), 2280-2285.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00916.x] [PMID: 19037978]
[14]
Birchmeier, C.; Birchmeier, W.; Gherardi, E.; Vande Woude, G.F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol., 2003, 4(12), 915-925.
[http://dx.doi.org/10.1038/nrm1261] [PMID: 14685170]
[15]
Comoglio, P.M.; Giordano, S.; Trusolino, L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat. Rev. Drug Discov., 2008, 7(6), 504-516.
[http://dx.doi.org/10.1038/nrd2530] [PMID: 18511928]
[16]
Park, C.H.; Cho, S.Y.; Ha, J.D.; Jung, H.; Kim, H.R.; Lee, C.O.; Jang, I.Y.; Chae, C.H.; Lee, H.K.; Choi, S.U. Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells. BMC Cancer, 2016, 16, 35.
[http://dx.doi.org/10.1186/s12885-016-2058-y] [PMID: 26801760]
[17]
Garajová, I.; Giovannetti, E.; Biasco, G.; Peters, G.J.; Giovannetti, E.; Biasco, G.; Peters, G.J. C-met as a target for personalized therapy. Transl. Oncogenomics, 2015, 7(Suppl. 1), 13-31.
[PMID: 26628860]
[18]
Zhang, W.; Ai, J.; Shi, D.; Peng, X.; Ji, Y.; Liu, J.; Geng, M.; Li, Y. Discovery of novel type II c-Met inhibitors based on BMS-777607. Eur. J. Med. Chem., 2014, 80, 254-266.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.056] [PMID: 24792774]
[19]
Al-U’datt, D.G.F.; Al-Husein, B.A.A.; Qasaimeh, G.R. A mini-review of c-Met as a potential therapeutic target in melanoma. Biomed. Pharmacother., 2017, 88, 194-202.
[http://dx.doi.org/10.1016/j.biopha.2017.01.045] [PMID: 28107696]
[20]
Okuma, H.S.; Kondo, S. Trends in the development of MET inhibitors for hepatocellular carcinoma. Future Oncol., 2016, 12(10), 1275-1286.
[http://dx.doi.org/10.2217/fon.16.3] [PMID: 26984595]
[21]
Atreya, C.E.; Song, E.K.; Messersmith, W.; Purkey, A.; Bagby, S.; Quackenbush, K.; Kelley, R.K.; Kwak, E.; Ryan, D.; Venook, A.; Arcaroli, J.J. Abstract LB-302: Potent antitumor activity of XL184 (Cabozantinib), a c-MET and VEGFR2 inhibitor, in colorectal cancer patient-derived tumor explant models. Int. J. Cancer, 2013, 136, 1967-1975.
[22]
Li, Z.; Beichen, Z.; Jingyun, Z.; Yanle, Z.; Lu, W.; Tao, L.; Chen, Y. Structure-based design, synthesis, and evaluation of 4,5,6,7-tetrahydro-1 h -pyrazolo[4,3- c ]pyridine derivatives as novel c-met inhibitors. Eur. J. Med. Chem., 2017, 138, 924-951.
[23]
Cui, J.J. Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J. Med. Chem., 2014, 57(11), 4427-4453.
[http://dx.doi.org/10.1021/jm401427c] [PMID: 24320965]
[24]
Dai, Y.; Siemann, D.W. BMS-777607, a small-molecule met kinase inhibitor, suppresses hepatocyte growth factor-stimulated prostate cancer metastatic phenotype in vitro. Mol. Cancer Ther., 2010, 9(6), 1554-1561.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0359] [PMID: 20515943]
[25]
Qian, F.; Engst, S.; Yamaguchi, K.; Yu, P.; Won, K.A.; Mock, L.; Lou, T.; Tan, J.; Li, C.; Tam, D.; Lougheed, J.; Yakes, F.M.; Bentzien, F.; Xu, W.; Zaks, T.; Wooster, R.; Greshock, J.; Joly, A.H. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res., 2009, 69(20), 8009-8016.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4889] [PMID: 19808973]
[26]
Li, S.; Huang, Q.; Liu, Y.; Zhang, X.; Liu, S.; He, C.; Gong, P. Design, synthesis and antitumour activity of bisquinoline derivatives connected by 4-oxy-3-fluoroaniline moiety. Eur. J. Med. Chem., 2013, 64, 62-73.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.001] [PMID: 23644189]
[27]
Peterson, Q.P.; Hsu, D.C.; Goode, D.R.; Novotny, C.J.; Totten, R.K.; Hergenrother, P.J. Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3. J. Med. Chem., 2009, 52(18), 5721-5731.
[http://dx.doi.org/10.1021/jm900722z] [PMID: 19708658]
[28]
Liang, Z.; Zhang, D.; Ai, J.; Chen, L.; Wang, H.; Kong, X.; Zheng, M.; Liu, H.; Luo, C.; Geng, M.; Jiang, H.; Chen, K. Identification and synthesis of N′-(2-oxoindolin-3-ylidene)hydrazide derivatives against c-Met kinase. Bioorg. Med. Chem. Lett., 2011, 21(12), 3749-3754.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.064] [PMID: 21561768]
[29]
Liu, T.; Sun, C.; Xing, X.; Jing, L.; Tan, R.; Luo, Y.; Huang, W.; Song, H.; Li, Z.; Zhao, Y. Synthesis and evaluation of 2-[2-(phenylthiomethyl)-1H-benzo[d] imidazol-1-yl)acetohydrazide derivatives as antitumor agents. Bioorg. Med. Chem. Lett., 2012, 22(9), 3122-3125.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.061] [PMID: 22483608]
[30]
Shrivastava, S.; Jeengar, M.K.; Reddy, V.S.; Reddy, G.B.; Naidu, V.G. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways. Exp. Mol. Pathol., 2015, 98(3), 313-327.
[http://dx.doi.org/10.1016/j.yexmp.2015.03.031] [PMID: 25818165]
[31]
Shrivastava, S.; Kulkarni, P.; Thummuri, D.; Jeengar, M.K.; Naidu, V.G.; Alvala, M.; Redddy, G.B.; Ramakrishna, S. Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis, 2014, 19(7), 1148-1164.
[http://dx.doi.org/10.1007/s10495-014-0991-2] [PMID: 24729100]
[32]
Smith, B.D.; Kaufman, M.D.; Leary, C.B.; Turner, B.A.; Wise, S.C.; Ahn, Y.M.; Booth, R.J.; Caldwell, T.M.; Ensinger, C.L.; Hood, M.M.; Lu, W.P.; Patt, T.W.; Patt, W.C.; Rutkoski, T.J.; Samarakoon, T.; Telikepalli, H.; Vogeti, L.; Vogeti, S.; Yates, K.M.; Chun, L.; Stewart, L.J.; Clare, M.; Flynn, D.L. Altiratinib inhibits tumor growth, invasion, angiogenesis, and microenvironment-mediated drug resistance via balanced inhibition of MET, TIE2, and VEGFR2. Mol. Cancer Ther., 2015, 14(9), 2023-2034.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1105] [PMID: 26285778]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy