Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Combined use of Genetic Polymorphisms and Elastographic Techniques in NAFLD: Fact or Fiction?

Author(s): Rosa Lombardi, Silvia Fargion and Anna L. Fracanzani*

Volume 26, Issue 10, 2020

Page: [1010 - 1018] Pages: 9

DOI: 10.2174/1381612825666191122101021

Price: $65

conference banner
Abstract

Non-alcoholic fatty liver disease (NAFLD) includes liver diseases ranging from simple steatosis to progressive forms characterized by high rates of complications and mortality, namely fibrosis, cirrhosis and hepatocellular carcinoma. Identification of patients with simple steatosis who will evolve to a more severe liver disease would allow better management of risk factors. Liver biopsy is the gold standard for the staging of NAFLD, however given its invasiveness it is not widely applicable. FibroScan® has emerged as a reliable non-invasive tool for the identification of both hepatic steatosis and fibrosis, by providing two parameters called CAP (controlled attenuation parameter) and LSM (liver stiffness measurement). However, there is no consensus in literature on definite cut-offs, and some drawbacks in differentiating advanced grades of steatosis and diagnosing mild stages of fibrosis and are still present. In addition, some genetic polymorphisms, namely PNPLA3, TM6SF2 and MBOAT7, represent critical determinants in the pathogenesis of liver steatosis and in the progression of liver damage and could be used in this diagnostic setting. Despite data on the role of FibroScan® in the identification of liver steatosis and fibrosis and on the influence of genetic polymorphisms in the onset and progression of liver disease are extensive in the literature, very few studies have explored the role of their combination in NAFLD diagnosis and in the prediction of evolving disease. This emphasizes the need for a great effort in this field in order to improve clinicians’ diagnostic ability in everyday practice, avoiding invasive procedures when unnecessary and preventing NAFLD complications.

Keywords: Genetic polymorphisms, NAFLD diagnosis, FibroScan®, risk stratification, PNPLA3, TM6SF2, MBOAT7.

Next »
[1]
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[2]
Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41(6): 1313-21.
[http://dx.doi.org/10.1002/hep.20701] [PMID: 15915461]
[3]
Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015; 61(5): 1547-54.
[http://dx.doi.org/10.1002/hep.27368] [PMID: 25125077]
[4]
Leite NC, Salles GF, Araujo AL, Villela-Nogueira CA, Cardoso CR. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int 2009; 29(1): 113-9.
[http://dx.doi.org/10.1111/j.1478-3231.2008.01718.x] [PMID: 18384521]
[5]
Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol 2016; 65(3): 589-600.
[http://dx.doi.org/10.1016/j.jhep.2016.05.013] [PMID: 27212244]
[6]
Ostovaneh MR, Ambale-Venkatesh B, Fuji T, et al. Association of liver fibrosis with cardiovascular diseases in the general population: the Multi-Ethnic Study of Atherosclerosis (MESA). Circ Cardiovasc Imaging 2018; 11(3): e007241
[http://dx.doi.org/10.1161/CIRCIMAGING.117.007241] [PMID: 29523555]
[7]
Tsochatzis EA, Gurusamy KS, Ntaoula S, Cholongitas E, Davidson BR, Burroughs AK. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol 2011; 54(4): 650-9.
[http://dx.doi.org/10.1016/j.jhep.2010.07.033] [PMID: 21146892]
[8]
Wong VW, Vergniol J, Wong GL, et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010; 51(2): 454-62.
[http://dx.doi.org/10.1002/hep.23312]] [PMID: 20101745]
[9]
Castera L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol 2008; 48(5): 835-47.
[http://dx.doi.org/10.1016/j.jhep.2008.02.008] [PMID: 18334275]
[10]
Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53(6): 1883-94.
[http://dx.doi.org/10.1002/hep.24283] [PMID: 21381068]
[11]
Luukkonen PK, Zhou Y, Hyötyläinen T, et al. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol 2016; 65(6): 1263-5.
[http://dx.doi.org/10.1016/j.jhep.2016.07.045] [PMID: 27520876]
[12]
Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46(4): 352-6.
[http://dx.doi.org/10.1038/ng.2901] [PMID: 24531328]
[13]
Boursier J, Zarski JP, de Ledinghen V, et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology 2013; 57(3): 1182-91.
[http://dx.doi.org/10.1002/hep.25993] [PMID: 22899556]
[14]
de Lédinghen V, Vergniol J, Capdepont M, et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol 2014; 60(5): 1026-31.
[http://dx.doi.org/10.1016/j.jhep.2013.12.018] [PMID: 24378529]
[15]
Lombardi R, Petta S, Pisano G, et al. FibroScan detects cardiovascular damage in patients with NAFLD. Clin Gastroenterol Hepatol 2018; S1542-3565(18): 31254-0.
[http://dx.doi.org/10.1016/j.cgh.2018.11.011] [PMID: 30528844]
[16]
Singh S, Fujii LL, Murad MH, et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2013.1573-84.e1-2; quiz e88-9
[http://dx.doi.org/10.1016/j.cgh.2013.07.034]
[17]
Wong GL. Update of liver fibrosis and steatosis with transient elastography (Fibroscan). Gastroenterol Rep (Oxf) 2013; 1(1): 19-26.
[http://dx.doi.org/10.1093/gastro/got007] [PMID: 24759663]
[18]
Petta S, Maida M, Macaluso FS, et al. The severity of steatosis influences liver stiffness measurement in patients with nonalcoholic fatty liver disease. Hepatology 2015; 62(4): 1101-10.
[http://dx.doi.org/10.1002/hep.27844] [PMID: 25991038]
[19]
Petta S, Wong VW, Cammà C, et al. Improved noninvasive prediction of liver fibrosis by liver stiffness measurement in patients with nonalcoholic fatty liver disease accounting for controlled attenuation parameter values. Hepatology 2017; 65(4): 1145-55.
[http://dx.doi.org/10.1002/hep.28843] [PMID: 27639088]
[20]
Eddowes PJ, Sasso M, Allison M, et al. Accuracy of fibroscan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 2019; 156(6): 1717-30.
[http://dx.doi.org/10.1053/j.gastro.2019.01.042] [PMID: 30689971]
[21]
Castéra L, Foucher J, Bernard PH, et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 2010; 51(3): 828-35.
[http://dx.doi.org/10.1002/hep.23425] [PMID: 20063276]
[22]
de Lédinghen V, Wong VW, Vergniol J, et al. Diagnosis of liver fibrosis and cirrhosis using liver stiffness measurement: comparison between M and XL probe of FibroScan®. J Hepatol 2012; 56(4): 833-9.
[http://dx.doi.org/10.1016/j.jhep.2011.10.017] [PMID: 22173167]
[23]
Karlas T, Petroff D, Sasso M, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 2017; 66(5): 1022-30.
[http://dx.doi.org/10.1016/j.jhep.2016.12.022] [PMID: 28039099]
[24]
Fujimori N, Tanaka N, Shibata S, et al. Controlled attenuation parameter is correlated with actual hepatic fat content in patients with non-alcoholic fatty liver disease with none-to-mild obesity and liver fibrosis. Hepatol Res 2016; 46(10): 1019-27.
[http://dx.doi.org/10.1111/hepr.12649] [PMID: 27183219]
[25]
Chan WK, Nik Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2014; 29(7): 1470-6.
[http://dx.doi.org/10.1111/jgh.12557] [PMID: 24548002]
[26]
Shen F, Zheng RD, Mi YQ, et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients. World J Gastroenterol 2014; 20(16): 4702-11.
[http://dx.doi.org/10.3748/wjg.v20.i16.4702] [PMID: 24782622]
[27]
Kumar M, Rastogi A, Singh T, et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis: does etiology affect performance? J Gastroenterol Hepatol 2013; 28(7): 1194-201.
[http://dx.doi.org/10.1111/jgh.12134] [PMID: 23425053]
[28]
Myers RP, Elkashab M, Ma M, Crotty P, Pomier-Layrargues G. Transient elastography for the noninvasive assessment of liver fibrosis: a multicentre Canadian study. Can J Gastroenterol 2010; 24(11): 661-70.
[http://dx.doi.org/10.1155/2010/153986] [PMID: 21157581]
[29]
Myers RP, Pollett A, Kirsch R, et al. Controlled Attenuation Parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography. Liver Int 2012; 32(6): 902-10.
[http://dx.doi.org/10.1111/j.1478-3231.2012.02781.x] [PMID: 22435761]
[30]
Lupșor-Platon M, Feier D, Stefănescu H, et al. Diagnostic accuracy of controlled attenuation parameter measured by transient elastography for the non-invasive assessment of liver steatosis: a prospective study. J Gastrointestin Liver Dis 2015; 24(1): 35-42.
[PMID: 25822432]
[31]
Wong VW, Petta S, Hiriart JB, et al. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter. J Hepatol 2017; 67(3): 577-84.
[http://dx.doi.org/10.1016/j.jhep.2017.05.005] [PMID: 28506907]
[32]
Caussy C, Alquiraish MH, Nguyen P, et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018; 67(4): 1348-59.
[http://dx.doi.org/10.1002/hep.29639] [PMID: 29108123]
[33]
Boursier J, Konate A, Guilluy M, et al. Learning curve and interobserver reproducibility evaluation of liver stiffness measurement by transient elastography. Eur J Gastroenterol Hepatol 2008; 20(7): 693-701.
[http://dx.doi.org/10.1097/MEG.0b013e3282f51992] [PMID: 18679074]
[34]
Friedrich-Rust M, Ong MF, Martens S, et al. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 2008; 134(4): 960-74.
[http://dx.doi.org/10.1053/j.gastro.2008.01.034] [PMID: 18395077]
[35]
Cassinotto C, Boursier J, de Lédinghen V, et al. Liver stiffness in nonalcoholic fatty liver disease: A comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology 2016; 63(6): 1817-27.
[http://dx.doi.org/10.1002/hep.28394] [PMID: 26659452]
[36]
Cassinotto C, Lapuyade B, Aït-Ali A, et al. Liver fibrosis: noninvasive assessment with acoustic radiation force impulse elastography--comparison with FibroScan M and XL probes and FibroTest in patients with chronic liver disease. Radiology 2013; 269(1): 283-92.
[http://dx.doi.org/10.1148/radiol.13122208] [PMID: 23630312]
[37]
Chon YE, Jung KS, Kim SU, et al. Controlled attenuation parameter (CAP) for detection of hepatic steatosis in patients with chronic liver diseases: a prospective study of a native Korean population. Liver Int 2014; 34(1): 102-9.
[http://dx.doi.org/10.1111/liv.12282] [PMID: 24028214]
[38]
Gaia S, Carenzi S, Barilli AL, et al. Reliability of transient elastography for the detection of fibrosis in non-alcoholic fatty liver disease and chronic viral hepatitis. J Hepatol 2011; 54(1): 64-71.
[http://dx.doi.org/10.1016/j.jhep.2010.06.022] [PMID: 20932598]
[39]
Kumar R, Rastogi A, Sharma MK, et al. Liver stiffness measurements in patients with different stages of nonalcoholic fatty liver disease: diagnostic performance and clinicopathological correlation. Dig Dis Sci 2013; 58(1): 265-74.
[http://dx.doi.org/10.1007/s10620-012-2306-1] [PMID: 22790906]
[40]
Lee HW, Park SY, Kim SU, et al. Discrimination of nonalcoholic steatohepatitis using transient elastography in patients with nonalcoholic fatty liver disease. PLoS One 2016; 11(6)e0157358
[http://dx.doi.org/10.1371/journal.pone.0157358] [PMID: 27284700]
[41]
Lupsor M, Badea R, Stefanescu H, et al. Performance of unidimensional transient elastography in staging non-alcoholic steatohepatitis. J Gastrointestin Liver Dis 2010; 19(1): 53-60.
[PMID: 20361076]
[42]
Wong VW, Vergniol J, Wong GL, et al. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol 2012; 107(12): 1862-71.
[http://dx.doi.org/10.1038/ajg.2012.331] [PMID: 23032979]
[43]
Yoneda M, Yoneda M, Fujita K, et al. Transient elastography in patients with non-alcoholic fatty liver disease (NAFLD). Gut 2007; 56(9): 1330-1.
[http://dx.doi.org/10.1136/gut.2007.126417] [PMID: 17470477]
[44]
Yoneda M, Yoneda M, Mawatari H, et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD). Dig Liver Dis 2008; 40(5): 371-8.
[http://dx.doi.org/10.1016/j.dld.2007.10.019] [PMID: 18083083]
[45]
Petta S, Di Marco V, Cammà C, Butera G, Cabibi D, Craxì A. Reliability of liver stiffness measurement in non-alcoholic fatty liver disease: the effects of body mass index. Aliment Pharmacol Ther 2011; 33(12): 1350-60.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04668.x] [PMID: 21517924]
[46]
Cassinotto C, Lapuyade B, Mouries A, et al. Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan®. J Hepatol 2014; 61(3): 550-7.
[http://dx.doi.org/10.1016/j.jhep.2014.04.044] [PMID: 24815876]
[47]
Imajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 2016; 150: 626-7.e627.
[http://dx.doi.org/10.1053/j.gastro.2015.11.048]
[48]
Sasso M, Miette V, Sandrin L, Beaugrand M. The controlled attenuation parameter (CAP): a novel tool for the non-invasive evaluation of steatosis using Fibroscan. Clin Res Hepatol Gastroenterol 2012; 36(1): 13-20.
[http://dx.doi.org/10.1016/j.clinre.2011.08.001] [PMID: 21920839]
[49]
Karlas T, Petroff D, Garnov N, et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS One 2014; 9(3)e91987
[http://dx.doi.org/10.1371/journal.pone.0091987] [PMID: 24637477]
[50]
de Lédinghen V, Vergniol J, Foucher J, Merrouche W, le Bail B. Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography. Liver Int 2012; 32(6): 911-8.
[http://dx.doi.org/10.1111/j.1478-3231.2012.02820.x] [PMID: 22672642]
[51]
Jun BG, Park WY, Park EJ, et al. A prospective comparative assessment of the accuracy of the FibroScan in evaluating liver steatosis. PLoS One 2017; 12(8): e0182784
[http://dx.doi.org/10.1371/journal.pone.0182784] [PMID: 28813448]
[52]
Jung KS, Kim BK, Kim SU, et al. Factors affecting the accuracy of controlled attenuation parameter (CAP) in assessing hepatic steatosis in patients with chronic liver disease. PLoS One 2014; 9(6): e98689
[http://dx.doi.org/10.1371/journal.pone.0098689] [PMID: 24901649]
[53]
de Lédinghen V, Wong GL, Vergniol J, et al. Controlled attenuation parameter for the diagnosis of steatosis in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2016; 31(4): 848-55.
[http://dx.doi.org/10.1111/jgh.13219] [PMID: 26514665]
[54]
Sasso M, Audière S, Kemgang A, et al. Liver steatosis assessed by controlled attenuation parameter (cap) measured with the xl probe of the fibroscan: a pilot study assessing diagnostic accuracy. Ultrasound Med Biol 2016; 42(1): 92-103.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2015.08.008] [PMID: 26386476]
[55]
de Lédinghen V, Hiriart JB, Vergniol J, Merrouche W, Bedossa P, Paradis V. Controlled Attenuation Parameter (CAP) with the XL probe of the fibroscan®: a comparative study with the m probe and liver biopsy. Dig Dis Sci 2017; 62(9): 2569-77.
[http://dx.doi.org/10.1007/s10620-017-4638-3] [PMID: 28577247]
[56]
Masaki K, Takaki S, Hyogo H, et al. Utility of controlled attenuation parameter measurement for assessing liver steatosis in Japanese patients with chronic liver diseases. Hepatol Res 2013; 43(11): 1182-9.
[http://dx.doi.org/10.1111/hepr.12094]] [PMID: 23551911]
[57]
Sasso M, Beaugrand M, de Ledinghen V, et al. Controlled attenuation parameter (CAP): a novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol 2010; 36(11): 1825-35.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.07.005] [PMID: 20870345]
[58]
Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 2009; 49(3): 791-801.
[http://dx.doi.org/10.1002/hep.22726]] [PMID: 19105205]
[59]
Dongiovanni P, Donati B, Fares R, et al. PNPLA3 I148M polymorphism and progressive liver disease. World J Gastroenterol 2013; 19(41): 6969-78.
[http://dx.doi.org/10.3748/wjg.v19.i41.6969]] [PMID: 24222941]
[60]
Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40(12): 1461-5.
[http://dx.doi.org/10.1038/ng.257]] [PMID: 18820647]
[61]
Dongiovanni P, Petta S, Maglio C, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61(2): 506-14.
[http://dx.doi.org/10.1002/hep.27490]] [PMID: 25251399]
[62]
Mancina RM, Dongiovanni P, Petta S, et al. The MBOAT7-TMC4 Variant rs641738 Increases risk of nonalcoholic fatty liver disease in individuals of european descent. Gastroenterology 2016; 150: 1219-30.e1216.
[http://dx.doi.org/10.1053/j.gastro.2016.01.032]
[63]
Kotronen A, Johansson LE, Johansson LM, et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia 2009; 52(6): 1056-60.
[http://dx.doi.org/10.1007/s00125-009-1285-z] [PMID: 19224197]
[64]
Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ, Nash CRN. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 2010; 52(3): 894-903.
[http://dx.doi.org/10.1002/hep.23759] [PMID: 20684021]
[65]
Speliotes EK, Butler JL, Palmer CD, Voight BF, Hirschhorn JN. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 2010; 52(3): 904-12.
[http://dx.doi.org/10.1002/hep.23768]] [PMID: 20648472]
[66]
Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metabolism 2016; 65(8): 1026-37.
[http://dx.doi.org/10.1016/j.metabol.2015.08.018]] [PMID: 26409295]
[67]
Lonardo A, Ballestri S, Targher G. “Not all forms of NAFLD were created equal”. Do metabolic syndrome-related NAFLD and PNPLA3-related NAFLD exert a variable impact on the risk of early carotid atherosclerosis? Atherosclerosis 2017; 257: 253-5.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.01.008] [PMID: 28126321]
[68]
Käräjämäki AJ, Bloigu R, Kauma H, et al. Non-alcoholic fatty liver disease with and without metabolic syndrome: Different long-term outcomes. Metabolism 2017; 66: 55-63.
[http://dx.doi.org/10.1016/j.metabol.2016.06.009] [PMID: 27423871]
[69]
Hyysalo J, Männistö VT, Zhou Y, et al. A population-based study on the prevalence of NASH using scores validated against liver histology. J Hepatol 2014; 60(4): 839-46.
[http://dx.doi.org/10.1016/j.jhep.2013.12.009] [PMID: 24333862]
[70]
Nobili V, Donati B, Panera N, et al. A 4-polymorphism risk score predicts steatohepatitis in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2014; 58(5): 632-6.
[http://dx.doi.org/10.1097/MPG.0000000000000279] [PMID: 24345846]
[71]
Valenti L, Al-Serri A, Daly AK, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51(4): 1209-17.
[http://dx.doi.org/10.1002/hep.23622] [PMID: 20373368]
[72]
Trepo E, Guyot E, Ganne-Carrie N, et al. PNPLA3 (rs738409 C>G) is a common risk variant associated with hepatocellular carcinoma in alcoholic cirrhosis. Hepatology 2012; 55(4): 1307-8.
[http://dx.doi.org/10.1002/hep.25518] [PMID: 22162034]
[73]
Valenti L, Dongiovanni P, Ginanni Corradini S, Burza MA, Romeo S. PNPLA3 I148M variant and hepatocellular carcinoma: a common genetic variant for a rare disease. Dig Liver Dis 2013; 45(8): 619-24.
[http://dx.doi.org/10.1016/j.dld.2012.12.006] [PMID: 23333103]
[74]
Trépo E, Nahon P, Bontempi G, et al. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: Evidence from a meta-analysis of individual participant data. Hepatology 2014; 59(6): 2170-7.
[http://dx.doi.org/10.1002/hep.26767] [PMID: 24114809]
[75]
Shen JH, Li YL, Li D, Wang NN, Jing L, Huang YH. The rs738409 (I148M) variant of the PNPLA3 gene and cirrhosis: a meta-analysis. J Lipid Res 2015; 56(1): 167-75.
[http://dx.doi.org/10.1194/jlr.M048777] [PMID: 25378656]
[76]
Donati B, Dongiovanni P, Romeo S, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep 2017; 7(1): 4492.
[http://dx.doi.org/10.1038/s41598-017-04991-0] [PMID: 28674415]
[77]
Valenti L, Motta BM, Soardo G, et al. PNPLA3 I148M polymorphism, clinical presentation, and survival in patients with hepatocellular carcinoma. PLoS One 2013; 8(10)e75982
[http://dx.doi.org/10.1371/journal.pone.0075982] [PMID: 24155878]
[78]
Pirazzi C, Valenti L, Motta BM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 2014; 23(15): 4077-85.
[http://dx.doi.org/10.1093/hmg/ddu121] [PMID: 24670599]
[79]
Zhou Y, Llauradó G, Orešič M, Hyötyläinen T, Orho-Melander M, Yki-Järvinen H. Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2. J Hepatol 2015; 62(3): 657-63.
[http://dx.doi.org/10.1016/j.jhep.2014.10.010] [PMID: 25457209]
[80]
Liu YL, Reeves HL, Burt AD, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 2014; 5: 4309.
[http://dx.doi.org/10.1038/ncomms5309] [PMID: 24978903]
[81]
Sookoian S, Castaño GO, Scian R, et al. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 2015; 61(2): 515-25.
[http://dx.doi.org/10.1002/hep.27556] [PMID: 25302781]
[82]
Buch S, Stickel F, Trépo E, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 2015; 47(12): 1443-8.
[http://dx.doi.org/10.1038/ng.3417] [PMID: 26482880]
[83]
Abul-Husn NS, Cheng X, Li AH, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 2018; 378(12): 1096-106.
[http://dx.doi.org/10.1056/NEJMoa1712191] [PMID: 29562163]
[84]
Krawczyk M, Grünhage F, Zimmer V, Lammert F. Variant adiponutrin (PNPLA3) represents a common fibrosis risk gene: non-invasive elastography-based study in chronic liver disease. J Hepatol 2011; 55(2): 299-306.
[http://dx.doi.org/10.1016/j.jhep.2010.10.042] [PMID: 21168459]
[85]
Petta S, Di Marco V, Pipitone RM, et al. Prevalence and severity of nonalcoholic fatty liver disease by transient elastography: Genetic and metabolic risk factors in a general population. Liver Int 2018; 38(11): 2060-8.
[http://dx.doi.org/10.1111/liv.13743] [PMID: 29577560]
[86]
Arslanow A, Stokes CS, Weber SN, Grünhage F, Lammert F, Krawczyk M. The common PNPLA3 variant p.I148M is associated with liver fat contents as quantified by controlled attenuation parameter (CAP). Liver Int 2016; 36(3): 418-26.
[http://dx.doi.org/10.1111/liv.12937] [PMID: 26264356]
[87]
Shen J, Wong GL, Chan HL, et al. PNPLA3 gene polymorphism accounts for fatty liver in community subjects without metabolic syndrome. Aliment Pharmacol Ther 2014; 39(5): 532-9.
[http://dx.doi.org/10.1111/apt.12609] [PMID: 24417250]
[88]
Serra-Burriel M, Graupera I, Torán P, et al. Transient elastography for screening of liver fibrosis: Cost-effectiveness analysis from six prospective cohorts in Europe and Asia. J Hepatol 2019; S0168-8278(19): 30486-6.
[http://dx.doi.org/10.1016/j.jhep.2019.08.019] [PMID: 31470067]
[89]
Crossan C, Tsochatzis EA, Longworth L, et al. Cost-effectiveness of non-invasive methods for assessment and monitoring of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation. Health Technol Assess 2015; 19(9): 1-409. v-vi
[http://dx.doi.org/10.3310/hta19090] [PMID: 25633908]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy