Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Current Applications of Biopolymer-based Scaffolds and Nanofibers as Drug Delivery Systems

Author(s): Tatiana Rita de Lima Nascimento, Marilia Mattar de Amoêdo Campos Velo, Camila Félix Silva, Sara Brito Silva Costa Cruz, Brenna Louise Cavalcanti Gondim, Rafael Francisco Lia Mondelli and Lúcio Roberto Cançado Castellano*

Volume 25, Issue 37, 2019

Page: [3997 - 4012] Pages: 16

DOI: 10.2174/1381612825666191108162948

Price: $65

conference banner
Abstract

Background: The high surface-to-volume ratio of polymeric nanofibers makes them an effective vehicle for the release of bioactive molecules and compounds such as growth factors, drugs, herbal extracts and gene sequences. Synthetic polymers are commonly used as sensors, reinforcements and energy storage, whereas natural polymers are more prone to mimicking an extracellular matrix. Natural polymers are a renewable resource and classified as an environmentally friendly material, which might be used in different techniques to produce nanofibers for biomedical applications such as tissue engineering, implantable medical devices, antimicrobial barriers and wound dressings, among others. This review sheds some light on the advantages of natural over synthetic polymeric materials for nanofiber production. Also, the most important techniques employed to produce natural nanofibers are presented. Moreover, some pieces of evidence regarding toxicology and cell-interactions using natural nanofibers are discussed. Clearly, the potential extrapolation of such laboratory results into human health application should be addressed cautiously.

Keywords: Biopolymers, nanofibers, toxicology, drug delivery systems, biomedical research, synthetic polymers.

[1]
Porter AL, Youtie J. How interdisciplinary is nanotechnology? J Nanopart Res 2009; 11: 1023-41.
[http://dx.doi.org/10.1007/s11051-009-9607-0]
[2]
Schaming D, Remita H. Nanotechnology: from the ancient time to nowadays. Found Chem 2015; 17: 187-205.
[http://dx.doi.org/10.1007/s10698-015-9235-y]
[3]
Sheeparamatti BG. Nanotechnology: inspiration from nature. IETE Tech Rev 2015; 24(1)
[4]
Boulaiz H, Alvarez PJ, Ramirez A, et al. Nanomedicine: Application areas and development prospects. Int J Mol Sci 2011; 12: 3303-21.
[5]
Cancino J, Marangoni VS, Zucolotto V. Nanotecnologia em medicina: aspectos fundamentais e principais preocupações. [Nanotechnology in medicine: concepts and concerns] SciELO Anal 2014; 37(3): 521-6.
[6]
Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 2018; 10: 1-14.
[http://dx.doi.org/10.3390/polym10010031]
[7]
Aldrich A, Kuss MA, Duan B, Kielian T. 3D Bioprinted scaffolds containing viable macrophages and antibiotics promote clearance of Staphylococcus aureus craniotomy-associated biofilm infection. ACS Appl Mater Interfaces 2019; 11(13): 12298-307.
[8]
Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. Wiley InterSci 2009; 113: 2322-30.
[9]
Dumitriu C, Stoian AB, Titorencu I, et al. Electrospun TiO2 nanofibers decorated Ti substrate for biomedical application. Mater Sci Eng 2014; 45: 56-3.
[http://dx.doi.org/10.1016/j.msec.2014.08.055]
[10]
Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration. Int J Pharm 2015; 484: 57-74.
[11]
Rezaei B, Ghani M, Shoushtari AM, Rabiee M. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: a comprehensive review. Biosens Bioelectron 2016; 78: 513-23.
[http://dx.doi.org/10.1016/j.bios.2015.11.083]
[12]
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine 2019; 1: 15-30.
[13]
Matlock-Colangelo L, Baeumner AJ. Biologically inspired nanofibers for use in translational bioanalytical systems. Annu Rev Anal Chem (Palo Alto, Calif) 2014; 7: 23-42.
[14]
Medeiros ELG, Braz AL, Porto IJ, et al. Porous bioactive nanofibers via cryogenic solution blow spinning and their formation into 3d macroporous scaffolds. ACS Biomater Sci Eng 2016; 2(9): 1442-9.
[15]
Magaz A, Roberts AD, Faraji S, et al. Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning. Biomacromolecules 2018; 19(12): 4542-53.
[16]
Smith IO, Liu XH, Smith LA, Ma PX. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009; 1(2): 226-36.
[http://dx.doi.org/10.1002/wnan.26]
[17]
Bakhshandeh B, Soleimani M, Ghaemi N, Shabani I. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta Pharmacol Sin 2011; 32(5): 626-36.
[http://dx.doi.org/10.1038/aps.2011.8]
[18]
Zhang W, Ronca S, Mele E. Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials (Basel) 2017; Feb 7(2)pii e42
[19]
Mirtič J, Balažic H, Zupančič Š, Kristl J. Effect of solution composition variables on electrospun alginate nanofibers: response surface analysis. Polymers (Basel) 2019; 11(4)pii e692
[20]
Kenry ChweeT. Nanofiber technology: current status and emerging developments. Prog Polym Sci 2017; 70: 1-17.
[21]
Luzi F, Puglia D, Torre L. Natural fiber biodegradable composites and nanocomposites: A biomedical application In: Verma D, Fortunati E, Jain S, Zhang X, Eds, Biomass, Biopolymer-Based Materials, and Bioenergy Woodhead Publishing 2019; 179-201.
[http://dx.doi.org/10.1016/B978-0-08-102426-3.00010-2]
[22]
Paschoalin RT, Traldi B, Aydin G, et al. Solution blow spinning fibres: new immunologically inert substrates for the analysis of cell adhesion and motility. Acta Biomater 2017; 51: 161-74.
[23]
Shalaby SW, Shah KR. Chemical modifications of natural polymers and their technological relevance ACS Symp Ser 1991; 467: 74-80.
[http://dx.doi.org/10.1021/bk-1991-0467.ch004]
[24]
Pant B, Park M, Park SJ. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics 2019; 11(7): pii 305.
[http://dx.doi.org/10.3390/pharmaceutics11070305] [PMID: 31266186]
[25]
Kamyar N, Greenhalgh RD, Nascimento TRL, et al. Exploiting inherent instability of 2D black phosphorus for controlled phosphate release from blow-spun poly(lactide- co -glycolide). Nanofibers 2018; 1: 4190-7.
[http://dx.doi.org/10.1021/acsanm.8b00938]
[26]
Bai H, Li Z, Zhang S, Wang W, Dong W. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr Polym 2018; 200: 468-76.
[27]
Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013; 34(34): 8533-54.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.089]
[28]
Walmsley GG, McArdle A, Tevlin R, et al. Nanotechnology in bone tissue engineering. Nanomedicine 2015; 11(5): 1253-63.
[http://dx.doi.org/10.1016/j.nano.2015.02.013]
[29]
Um IC, Fang D, Hsiao BS, Okamoto A, Chu B. Electro-spinning and electro-blowing of hyaluronic acid 2004 5: 1428-36.
[http://dx.doi.org/10.1021/bm034539b]
[30]
Elia R, Newhide DR, Pedevillano PD, Reiss GR. Silk-hyaluronan-based composite hydrogels: a novel, securable vehicle for drug delivery 2013 27: pp. 749-62.
[31]
Pokorny M, Rassushin V, Wolfova L, Velebny V. Increased production of nanofibrous materials by electroblowing from blends of hyaluronic acid and polyethylene oxide. Polym Eng Sci 2016; 56: 932-8.
[http://dx.doi.org/10.1002/pen.24322]
[32]
Lu L, Wu D, Zhang M, Zhou W. Fabrication of polylactide/poly(ε-caprolactone) blend fibers by electrospinning: morphology and orientation. Ind Eng Chem Res 2012; 51(9): 3682-981.
[33]
Ding Y, Roether J, Boccaccini AR, Schubert DW. Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. Eur Polym J 2014; 55: 222-34.
[34]
Sakamoto FC. Obtenção e caracterização de filmes de PHB utilizando a técnica de solution blow spinning Ciência dos Materiais - FEIS 2013; 70.
[35]
Kim SH, Nam YS, Lee TS, Park WH. Silk fibroin nanofiber. Electrospinning, properties, and structure. Polym J 2003; 35: 185-90.
[36]
Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 2001; 90(9): 4836-6.
[http://dx.doi.org/10.1063/1.1408260]
[37]
Reznik SN, Yarin AL, Theron A, Zussman E. Transient and steady shapes of droplets attached to a surface in a strong electric field. J Fluid Mech 2004; 516: 349-77.
[http://dx.doi.org/10.1017/S0022112004000679]
[38]
Horner CB, Low K, Nam J. Electrospun Scaffolds for Cartilage Regeneration In: Liu H, Ed, Nanocomposites for Musculoskeletal Tissue Regeneration Woodhead Publishing: Elsevier Ltd 2016; pp. 213-40.
[http://dx.doi.org/10.1016/B978-1-78242-452-9.00010-8]
[39]
Wojasiński M, Pilarek M, Ciach T. Comparative studies of electrospinning and solution blow spinning processes for the production of nanofibrous poly(L-Lactic Acid) materials for biomedical engineering. Pol J Chem Technol 2014; 16: 43-50.
[40]
Chahal S, Hussain FSJ, Kumar A, Rasad MSBA, Yusoff MM. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chem Eng Sci 2016; 144: 17-29.
[41]
Shao W, He J, Sang F, et al. Enhanced bone formation in electrospun poly(l-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Mater Sci Eng C Mater Biol Appl 2016; 62: 823-34.
[42]
Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA. Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir 2012; 28(13): 5834-44.
[43]
Costa RGF, De Oliveira JE, De Paula GF, et al. Electrospinning of polymers in solution In: Part II: Applications and perspectives 2012; 22: pp. 178-85.
[44]
Ling S, Li C, Adamcik J, et al. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. ACS Macro Lett 2014; 3: 146-52.
[http://dx.doi.org/10.1021/mz400639y]
[45]
Alwattar A, Haddad A, Zhou Q, et al. Synthesis and characterisation of fluorescent pyrene-end-capped polylactide fibres. Polym Int 2019; 68: 360-8.
[http://dx.doi.org/10.1002/pi.5712]
[46]
McCune D, Guo X, Shi T, et al. Electrospinning pectin-based nanofibers: A parametric and cross-linker study. Appl Nanosci 2018; 8: 33-40.
[http://dx.doi.org/10.1007/s13204-018-0649-4]
[47]
Rockwell PL, Kiechel MA, Atchison JS, Toth LJ, Schauer CL. Various-sourced pectin and polyethylene oxide electrospun fibers. Carbohydr Polym 2014; 107: 110-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.02.026]
[48]
Qu J, Zhou D, Xu X, et al. Optimization of electrospun TSF nanofiber alignment and diameter to promote growth and migration of mesenchymal stem cells. Appl Surf Sci 2012; 261: 320-6.
[http://dx.doi.org/10.1016/j.apsusc.2012.08.008]
[49]
Zhou Y, Wu HY. Property research of silk fibroin nanofibers by electrospinning dissolved in CaCl2-formid acid. Adv Mater Res 2015; 331-336: 1120-1.
[50]
Zhang S, Huang Y, Yang X, et al. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A 2009; 90: 671-9.
[http://dx.doi.org/10.1002/jbm.a.32136]
[51]
Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules 2002; 3(2): 232-8.
[52]
Wnek GE, Carr ME, Simpson DG, Bowlin GL. Electrospinning of nanofiber fibrinogen structures. Nano Lett 2003; 3: 213-6.
[http://dx.doi.org/10.1021/nl025866c]
[53]
Shahbazi E, Bahrami K. Production and properties analysis of honey nanofibers enriched with antibacterial herbal extracts for repair and regeneration of skin and bone tissues. J Pharm Pharmacol 2019; 7: 37-50.
[54]
Hu MX, Li JN, Guo Q, Zhu YQ, Niu HM. Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production. J Agric Food Chem 2019; 67: 3198-208.
[http://dx.doi.org/10.1021/acs.jafc.8b05024]
[55]
Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 2010; 116: 2658-67.
[56]
Souza MA, Sakamoto KY, Mattoso LHC. Release of the diclofenac sodium by nanofibers of poly(3-hydroxybutyrate- co -3-hydroxyvalerate) obtained from electrospinning and solution blow spinning. J Nanomater 2014; 2014: 1-8.
[57]
Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 2014; 113.
[58]
Stojanovska E, Canbay E, Pampal ES, et al. A review on non-electro nanofibre spinning techniques. RSC Advances 2016; 6: 83783.
[http://dx.doi.org/10.1039/C6RA16986D]
[59]
Bonan RF, Bonan PRF, Batista AUD, et al. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp) oil. Mater Sci Eng C Mater Biol Appl 2015; 48: 372-7.
[60]
Bonan RF, Bonan PRF, Batista AUD, et al. Poly(lactic acid)/poly(vinyl pyrrolidone) membranes produced by solution blow spinning: structure, thermal, spectroscopic, and microbial barrier properties. J Appl Polym Sci 2017; 134: 1-9.
[61]
Ding Y, Li W, Müller T, et al. Electrospun polyhydroxybutyrate/poly(ϵ-caprolactone)/58s sol-gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering. ACS Appl Mater Interfaces 2016; 8: 17098-08.
[62]
Mattoso LHC, Medeiros ES. Method and apparatus to produce micro and/or nanofiber webs from polymers, uses thereof and coating method. United States Patents US9650731B2 2012.
[63]
Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 2010; 116: 2658-67.
[64]
Lou H, Li W, Li C, Wang X. Systematic investigation on parameters of solution blown micro/nanofibers using response surface methodology based on box-Behnken design. J Appl Polym Sci 2013; 130: 1383-91.
[65]
da Silva Parize DD, Foschini MM, de Oliveira JE, et al. Solution blow spinning: parameters optimization and effects on the properties of nanofibers from poly(lactic acid)/dimethyl carbonate solutions. J Mater Sci 2016; 51: 4627-38.
[66]
Da Silva Parize DD, De Oliveira JE, Foschini MM, Marconcini JM, Mattoso LHC. Poly(lactic acid) fibers obtained by solution blow spinning: effect of a greener solvent on the fiber diameter. J Appl Polym Sci 2016; 133: 1-10.
[67]
Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES. Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: a comparative study. Adv Mater Sci Eng 2013; 2013409572
[http://dx.doi.org/10.1155/2013/409572]
[68]
Zhuang X, Yang X, Shi L, Cheng B, Guan K, Kang W. Solution blowing of submicron-scale cellulose fibers. Carbohydr Polym 2012; 90(2): 982-7.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.031]
[69]
Liu R, Xu X, Zhuang X, Cheng B. Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym 2014; 101: 1116-21.
[70]
Sinha-Ray S, Zhang Y, Yarin AL, Davis SC, Pourdeyhimi B. Solution blowing of soy protein fibers ACS Symp Ser 2012; 1105: 335- 48
[http://dx.doi.org/10.1021/bk-2012-1105.ch020]
[71]
Kolbasov A, Sinha-Ray S, Joijode A, et al. Industrial-scale solution blowing of soy protein nanofibers. Ind Eng Chem Res 2016; 55: 323-33.
[72]
Nepomuceno NC, Barbosa MA, Bonan RF, Oliveira JE, Sampaio FC, Medeiros ES. Antimicrobial activity of PLA/PEG nanofibers containing terpinen-4-ol against Aggregatibacter actinomycetemcomitans. J Appl Polym Sci 2018; 135: 1-9.
[73]
Zhuang XP, Jia K, Cheng B, Feng X, Shi S, Zhang B. Solution blowing of continuous carbon nanofiber yarn and its electrochemical performance for supercapacitors. Chem Eng J 2014; 237: 308-11.
[http://dx.doi.org/10.1016/j.cej.2013.10.038]
[74]
Sohier J, Corre P, Perret C, Pilet P, Weiss P. Novel and simple alternative to create nanofibrillar matrices of interest for tissue engineering. Tissue Eng Part C Methods 2014; 20(4): 285-96.
[http://dx.doi.org/10.1089/ten.tec.2013.0147] [PMID: 23937338]
[75]
Li ZB, Liu HY, Dou H. On air blowing direction in the blown bubble-spinning. Materia (Rio de Janeiro) 2014; 19: 345-9.
[http://dx.doi.org/10.1590/S1517-70762014000400003]
[76]
Mahalingam S, Edirisinghe M. Forming of polymer nanofibers by a pressurised gyration process. Macromol Rapid Commun 2013; 19: 345-9.
[http://dx.doi.org/10.1002/marc.201300339]
[77]
Lou H, Han W, Wang X. Numerical study on the solution blowing annular jet and its correlation with fiber morphology. Ind Eng Chem Res 2014; 53: 2830-8.
[http://dx.doi.org/10.1021/ie4037142]
[78]
Blaker JJ, Knowles JC, Day RM. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomater 2008; 4: 264-72.
[http://dx.doi.org/10.1016/j.actbio.2007.09.011]
[79]
Blaker JJ, Bismarck A, Boccaccini AR, Young AM, Nazhat SN. Premature degradation of poly(α-hydroxyesters) during thermal processing of Bioglass-containing composites. Acta Biomater 2010; 6: 756-62.
[80]
Lee KY, Blaker JJ, Bismarck A. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 2009; 69: 2724-33.
[http://dx.doi.org/10.1016/j.compscitech.2009.08.016]
[81]
Blaker JJ, Boccaccini AR, Nazhat SN. Thermal characterizations of silver-containing bioactive glass-coated sutures. J Biomater Appl 2005; 20: 81-98.
[http://dx.doi.org/10.1177/0885328205054264]
[82]
Boccaccini AR, Blaker JJ, Maquet V, Chung W, Jérôme R, Nazhat SN. Poly(D,L-lactide) (PDLLA) foams with TiO2 nanoparticles and PDLLA/TiO2-Bioglass® foam composites for tissue engineering scaffolds. J Mater Sci 2006; 41: 3999-4008.
[http://dx.doi.org/10.1007/s10853-006-7575-7]
[83]
Greenhalgh RD, Ambler WS, Quinn SJ, et al. Hybrid sol-gel inorganic/gelatin porous fibres via solution blow spinning. J Mater Sci 2017; 52: 9066-81.
[84]
Behrens AM, Kim J, Hotaling N, Seppala JE, Kofinas P, Tutak W. Rapid fabrication of poly(DL-lactide) nanofiber scaffolds with tunable degradation for tissue engineering applications by air-brushing. Biomed Mater 2016; 11035001
[85]
Rajgarhia SS, Benavides RE, Jana SC. Morphology control of bi-component polymer nanofibers produced by gas jet process. Polymer 2016; 93: 142-51.
[http://dx.doi.org/10.1016/j.polymer.2016.04.018]
[86]
Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials. review Prog Polym Sci 2011; 36: 1254-76.
[87]
Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2010; 2: 522-3.
[http://dx.doi.org/10.3390/polym2040522]
[88]
Cheung HY, Lau KT, Lu TP, Hui D. A critical review on polymer-based bio-engineered materials for scaffold development. Compos, Part B Eng 2007; 38: 291-300.
[http://dx.doi.org/10.1016/j.compositesb.2006.06.014]
[89]
Gomes M, Azevedo H, Malafaya P, et al. Natural Polymers in Tissue Engineering Applications In: Ebnesajjad S, Ed, Handbook of Biopolymers and Biodegradable Plastics William Andrew 2013; pp 385-425
[90]
Bhawani SA, Moheman A, Yakout AA, Ibrahim MNM. Nanostructured Biopolymers for Application as Drug-Delivery Vehicles. Nanostructured Polym. In: Swain SK, Jawaid M, Eds., Nanostructured Polymer Composites for Biomedical Applications. Elsevier 2019; pp. 189-210.
[http://dx.doi.org/10.1016/B978-0-12-816771-7.00010-7]
[91]
Talebian A, Mansourian A. Release of vancomycin from electrospun gelatin/chitosan nanofibers. Mater Today Proc 2017; 4: 7065-9.
[92]
Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 2012; 9: 401-19.
[93]
Lalegül-Ülker Ö, Vurat MT, Elçin AE, Elçin YM. Magnetic silk fibroin composite nanofibers for biomedical applications: fabrication and evaluation of the chemical, thermal, mechanical, and in vitro biological properties. J Appl Polym Sci 2019; 136(194): 48040.
[94]
Purington E, Bousfield D, Gramlich WM. Fluorescent dye adsorption in aqueous suspension to produce tagged cellulose nanofibers for visualization on paper. Cellulose (Lond) 2019; 26: 5117-31.
[http://dx.doi.org/10.1007/s10570-019-02439-4]
[95]
Kommareddy S, Amiji M. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug Chem 2005; 16: 1423-32.
[http://dx.doi.org/10.1021/bc050146t]
[96]
Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 2016; 133(3)
[http://dx.doi.org/10.1002/app.42883]
[97]
Garg T, Singh O, Arora S, Murthy R. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 2012; 29: 1-63.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.10]
[98]
Kolbasov A, Sinha-Ray S, Joijode A, et al. Industrial-scale solution blowing of soy protein nanofibers. Ind Eng Chem Res 2016; 55: 323-33.
[99]
Xu H, Cai S, Xu L, Yang Y. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 2014; 30: 8461-70.
[http://dx.doi.org/10.1021/la500768b]
[100]
Jin S. Research of bovine bone collagen/cellulose nanofibers-nanohydroxyapatite biological composite. MATEC Web Conf 2016; 67: 06062.
[101]
Mukudai Y, Kondo S, Koyama T, et al. Potential anti-osteoporotic effects of herbal extracts on osteoclasts, osteoblasts and chondrocytes in vitro. BMC Complement Altern Med 2014; 14: 29.
[http://dx.doi.org/10.1186/1472-6882-14-29]
[102]
Ye K, Kuang H, You Z, Morsi Y, Mo X. Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics 2019; 11: 182.
[103]
Oliveira JE, Medeiros ES, Cardozo L, et al. Development of poly(lactic acid) nanostructured membranes for the controlled delivery of progesterone to livestock animals. Mater Sci Eng C Mater Biol Appl 2013; 33: 844-9.
[104]
Singh V, Kumar V, Kashyap S, et al. Graphene oxide synergistically enhances antibiotic efficacy in vancomycin-resistant Staphylococcus aureus. ACS Appl Biomater 2019; 2: 1148-57.
[http://dx.doi.org/10.1021/acsabm.8b00757]
[105]
Carvalho A, Wang M, Zhu X, Rodin AS, Su H, Castro Neto AH. Phosphorene: from theory to applications. Nat Rev Mater 2016; 1: 16061.
[106]
Toskas G, Cherif C, Hund RD, et al. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym 2013; 94: 713-22.
[107]
Denry IL, Holloway JA, Nakkula RJ, Walters JD. Effect of niobium content on the microstructure and thermal properties of fluorapatite glass-ceramics. J Biomed Mater Res B Appl Biomater 2005; 75: 18-24.
[http://dx.doi.org/10.1002/jbm.b.30295]
[108]
Covarrubias C, Cádiz M, Maureira M, Celhay I, Cuadra F, von Marttens A. Bionanocomposite scaffolds based on chitosan-gelatin and nanodimensional bioactive glass particles: in vitro properties and in vivo bone regeneration. J Biomater Appl 2018; 32: 1115-63.
[109]
Nourmohammadi J, Ghaee A, Liavali SH. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydr Polym 2016; 138: 172-9.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.055]
[110]
Cai ZX, Mo XM, Zhang KH, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci 2010; 11: 3529-9.
[111]
Sadri M, Tahmineh N, Azam B. Preparation and evaluation of composite nanofibers containing vancomycin. Alborz Uni Med J 2018; 7: 43-53.
[112]
Brahatheeswaran D, Mathew A, Aswathy RG, et al. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomed Mater 2012; 7.
[http://dx.doi.org/10.1088/1748-6041/7/4/045001]
[113]
Pang L, Ming J, Pan F, Ning X. Fabrication of silk fibroin fluorescent nanofibers via electrospinning. Polymers (Basel) 2019; 11(6): 986.
[http://dx.doi.org/10.3390/polym11060986] [PMID: 31167377]
[114]
Azevedo VVC. Chaves S a, Bezerra DC, Fook MVL. Costa a CFM Quitina e Quitosana: aplicações como biomateriais. 2007; 2-3: 27- 34.
[115]
Klug M, Sanches MNM, Laranjeira MCM, Fávere VT, Rodrigues CA. Analysis of adsorption isotherms of Cu(II), Ni(II), Pb(II) and Zn(II) by N-(3,4-dihydroxybenzyl) chitosan using nonlinear regression method. Química Nova 1998; 21: 410-3.
[116]
Bielby RC, Pryce RS, Hench LL, Polak JM. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58s bioactive sol-gel glass. Tissue Eng 2005; 11: 479-88.
[117]
Poologasundarampillai G, Wang D, Li S, et al. Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater 2014; 10: 3733-46.
[http://dx.doi.org/10.1016/j.actbio.2014.05.020]
[118]
Lopes CM, Lobo JMS, Costa P. Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Rev Bras Cienc Farm 2005; 41: 143-54.
[http://dx.doi.org/10.1590/S1516-93322005000200003]
[119]
Banik BL, Brown JL. Polymeric biomaterials in nanomedicine. In: Kumbar SG, Laurencin CT, Deng M, Eds., Natural and Synthetic Biomedical Polymers. Elsevier Inc 2014; 387-95.
[http://dx.doi.org/10.1016/B978-0-12-396983-5.00024-7]
[120]
Ravandi SA, Gandhimathi C, Valizadeh M, Ramakrishna S. Application of electrospun natural biopolymer nanofibers. Curr Nanosci 2013; 9: 423-33.
[121]
Hayashi T. Biodegradable polymers for biomedical uses. J Polym Sci, B, Polym Phys 1994; 19: 663-702.
[http://dx.doi.org/10.1016/0079-6700(94)90030-2]
[122]
Mendes AC, Stephansen K, Chronakis IS. Electrospinning of food proteins and polysaccharides. Food Hydrocoll 2017; 68: 53-68.
[http://dx.doi.org/10.1016/j.foodhyd.2016.10.022]
[123]
Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer 2006; 47: 2911-7.
[http://dx.doi.org/10.1016/j.polymer.2006.02.046]
[124]
Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 2009; 61: 1007-9.
[125]
Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of silk fibroin use in wound dressings. Trends Biotechnol 2018; 36: 907-22.
[126]
Rao SH, Harini B, Shadamarshan RPK, Balagangadharan K, Selvamurugan N. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 2018; 110: 88-96.
[127]
Venugopal JR, Zhang Y, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 2006; 30(6): 440-6.
[128]
Mukherjee S, Reddy Venugopal J, Ravichandran R, Ramakrishna S, Raghunath M. Evaluation of the biocompatibility of PLACL/collagen nanostructured matrices with cardiomyocytes as a model for the regeneration of infarcted myocardium. Adv Funct Mater 2011; 21: 2291-300.
[129]
Ravichandran R, Seitz V, Venugopal JR, et al. Mimicking native extracellular matrix with phytic acid-crosslinked protein nanofibers for cardiac tissue engineering. Macromol Biosci 2013; 366-75.
[http://dx.doi.org/10.1002/mabi.201200391]
[130]
Schnell E, Klinkhammer K, Balzer S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 2007; 28: 3012-25.
[131]
Yu W, Zhao W, Zhu C, et al. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neurosci 2011; 12: 68.
[132]
Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 2008; 19(5): 2039-46.
[133]
Hall IJ, Paladino E, Szabó P, et al. Electrospun collagen-based nano fibres: a sustainable material for improved antibiotic utilisation in tissue engineering applications. Int J Pharm 2017; 531: 67-79.
[134]
Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 2016; 96: 83-102.
[http://dx.doi.org/10.1016/j.addr.2015.11.020]
[135]
Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 2010; 30: 1204.
[136]
Montero RB, Vial X, Nguyen DT, et al. BFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis. Acta Biomater 2012; 8: 1778-91.
[http://dx.doi.org/10.1016/j.actbio.2011.12.008]
[137]
Xu L, Sheybani N, Ren S, Bowlin GL, Yeudall WA, Yang H. Semi-interpenetrating network (Sipn) co-electrospun gelatin/insulin fiber formulation for transbuccal insulin delivery. Pharm Res 2015; 32: 275-85.
[138]
Hu J, Wei J, Liu W, Chen Y. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a drug delivery system by emulsion electrospinning. J Biomater Sci Polym Ed 2013; 24: 972-85.
[139]
Dinis TM, Elia R, Vidal G, Auffret A, Kaplan DL, Egles C. Method to form a fiber/growth factor dual-gradient along electrospun silk for nerve regeneration. ACS Appl Mater Interfaces 2014; 6: 16817-26.
[140]
Park WH, Jeong L, Yoo D. Il, Hudson S. Effect of chit osan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 2004; 45: 7151-7.
[141]
Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006; 27: 3115-24.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.022]
[142]
Li B, Chen J, Wang JH. RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J Biomed Mater Res A 2006; 79(4): 989-98.
[143]
Ding Y, Jia W, Zhang H, Li B, Gu Z, Lei Y. Carbonized hemoglobin nanofibers for enhanced H2O2 detection. Electroanalysis 2010; 22: 1911-7.
[http://dx.doi.org/10.1002/elan.200900595]
[144]
Bilal M, Iqbal HMN. Naturally-derived biopolymers: Potential platforms for enzyme immobilization. Electroanalysis 2019; 130: 462-82.
[145]
Bonino CA, Efimenko K, Jeong SI, Krebs MD, Alsberg E, Khan SA. Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions. Small 2012; 8: 1928-36.
[http://dx.doi.org/10.1002/smll.201101791]
[146]
Bonino CA, Krebs MD, Saquing CD, et al. Electrospinning alginate-based nanofibers: from blends to crosslinked low molecular weight alginate-only systems. Carbohydr Polym 2011; 85: 111-9.
[147]
Ming J, Zuo B. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel. J Cryst Growth 2014; 386: 154-61.
[148]
Wróblewska-Krepsztul J, Rydzkowski T, Michalska-Pożoga I, Thakur VK. Biopolymers for biomedical and pharmaceutical applications: recent advances and overview of alginate electrospinning. Nanomaterials (Basel) 2019; 9(3): 404.
[http://dx.doi.org/10.3390/nano9030404] [PMID: 30857370]
[149]
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Sridhar R, Ramakrishna S. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. Int J Cardiol 2013; 167: 1461-8.
[150]
Jin J, Hassanzadeh P, Perotto G, et al. A biomimetic composite from solution self-assembly of chitin nanofibers in a silk fibroin matrix. Adv Mater 2013; 25: 4482-7.
[http://dx.doi.org/10.1002/adma.201301429]
[151]
Shabunin A, Yudin V, Dobrovolskaya I, et al. Composite wound dressing based on chitin/chitosan nanofibers: processing and biomedical applications. Cosmetics 2019; 6: 16.
[152]
Sivashankari PR, Prabaharan M. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int J Biol Macromol 2016; 93: 1382-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.043]
[153]
Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 2010; 28: 142-50.
[http://dx.doi.org/10.1016/j.biotechadv.2009.11.001]
[154]
Sun K, Li ZH. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 2011; 5: 342-61.
[http://dx.doi.org/10.3144/expresspolymlett.2011.34]
[155]
Ignatova M, Manolova N, Rashkov I. Electrospun antibacterial chitosan-based fibers. Macromol Biosci 2013; 13: 860-72.
[156]
Torres-Giner S, Ocio MJ, Lagaron JM. Development of active antimicrobial fiber based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci 2008; 8: 303-14.
[http://dx.doi.org/10.1002/elsc.200700066]
[157]
Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 2005; 26: 5999-6008.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.030]
[158]
Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 2004; 9: 1422-32.
[http://dx.doi.org/10.2741/1313]
[159]
Nivison-Smith L, Rnjak J, Weiss AS. Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomater 2010; 6: 354-9.
[160]
Babitha S, Rachita L, Karthikeyan K, et al. Electrospun protein nanofibers in healthcare: a review. Int J Pharm 2017; 523(1): 52-90.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.013] [PMID: 28286080]
[161]
Rezaei A, Nasirpour A, Fathi M. Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Compr Rev Food Sci F 2015; 14: 269-84.
[http://dx.doi.org/10.1111/1541-4337.12128]
[162]
Wang X, Kim YG, Drew C, Ku BC, Kumar J, Samuelson LA. Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett 2004; 4: 331-4.
[163]
Ma Z, Kotaki M, Ramakrishna S. Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 2005; 265: 115-23.
[http://dx.doi.org/10.1016/j.memsci.2005.04.044]
[164]
Kim S, Park SG, Kang SW, Lee KJ. Nanofiber-based hydrocolloid from colloid electrospinning toward next generation wound dressing. Macromol Mater Eng 2016; 301: 818-26.
[165]
Pangpookiew P, Wattanathorn J, Muchimapura S, Thukhummee W. Quercetin-loaded zein based nanofiber patch: a novel cognitive enhancer. Int J Pharm Biomed 2012; 3: 103-8.
[166]
Li J, Feng H, He J, et al. Coaxial electrospun zein nanofibrous membrane for sustained release. J Biomater Sci Polym Ed 2013; 24: 1923-34.
[http://dx.doi.org/10.1080/09205063.2013.808960]
[167]
Zhang CY, Zhang W, Mao LB, Zhao Y, Yu SH. Biomimetic mineralization of zein/calcium phosphate nanocomposite nanofibrous mats for bone tissue scaffolds. CrystEngComm 2014; 16: 9513-9.
[168]
Silva SS, Mano JF, Reis RL. Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit Rev Biotechnol 2010; 30: 200-21.
[http://dx.doi.org/10.3109/07388551.2010.505561]
[169]
Lin J, Li C, Zhao Y, Hu J, Zhang LM. Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl Mater Interfaces 2012; 4: 1050-7.
[http://dx.doi.org/10.1021/am201669z]
[170]
Vaz CM, Fossen M, Tuil RF, et al. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications. J Biomed Mater Res A 2003; 65: 60-70.
[http://dx.doi.org/10.1002/jbm.a.10416]
[171]
Santin M, Morris C, Standen G, Nicolais L, Ambrosio L. A new class of bioactive and biodegradable soybean-based bone fillers. Biomacromolecules 2007; 8: 2706-11.
[172]
Huang CH, Chi CY, Chen YS, Chen KY, Chen PL, Yao CH. Evaluation of proanthocyanidin-crosslinked electrospun gelatin nanofibers for drug delivering system. Mater Sci Eng C 2012; 32: 2476-83.
[http://dx.doi.org/10.1016/j.msec.2012.07.029]
[173]
Chen HC, Jao WC, Yang MC. Characterization of gelatin nanofibers electrospun using ethanol/formic acid/water as a solvent. Polym Adv Technol 2009; 20: 98-103.
[174]
Liu L, Yoshioka M, Nakajima M, et al. Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials 2014; 35: 6259-67.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.024]
[175]
Meng ZX, Li HF, Sun ZZ, Zheng W, Zheng YF. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2013; 33: 699-706.
[176]
Amiraliyan N, Nouri M, Kish MH. Electrospinning of silk nanofibers I. an investigation of nanofiber morphology and process optimization using response surface methodology. Fibers Polym 2009; 10: 167-76.
[177]
Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013; 65: 457-70.
[http://dx.doi.org/10.1016/j.addr.2012.09.043]
[178]
Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. Pharmaceutics 2011; 150: 128-41.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.007]
[179]
Balasubramanian P, Prabhakaran MP, Kai D, Ramakrishna S. Human cardiomyocyte interaction with electrospun fibrinogen/gelatin nanofibers for myocardial regeneration. J Biomater Sci Polym Ed 2013; 24: 1660-75.
[180]
Razola SS, Ruiz BL, Diez NM, Mark HB, Kauffmann JM. Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens Bioelectron 2002; 17: 921-8.
[http://dx.doi.org/10.1016/S0956-5663(02)00083-0]
[181]
Narwal V, Yadav N, Thakur M, Pundir CS. An amperometric H2O2 biosensor based on hemoglobin nanoparticles immobilized on to a gold electrode. Biosci Rep 2017; 37BSR20170194
[http://dx.doi.org/10.1042/BSR20170194]
[182]
Helbing C, Deckert-Gaudig T, Firkowska-Boden I, Wei G, Deckert V, Jandt KD. Protein handshake on the nanoscale: how albumin and hemoglobin self-assemble into nanohybrid fibers. ACS Nano 2018; 12: 1211-9.
[183]
Jayawardena N, Kaur M, Nair S, et al. Amyloid fibrils from hemoglobin. Biomolecules 2017; 7: 37.
[http://dx.doi.org/10.3390/biom7020037]
[184]
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012; 37: 106-26.
[185]
Aderibigbe BA, Buyana B. Alginate in wound dressings. Pharmaceutics 2018; 10: 42.
[186]
Xu W, Shen R, Yan Y, Gao J. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. J Mech Behav Biomed Mater 2017; 65: 428-38.
[187]
Lemma SM, Bossard F, Rinaudo M. Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly (ethylene oxide). Int J Mol Sci 2016; 17: 1790.
[188]
Desai K, Kit K, Li J, Zivanovic S. Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 2008; 9: 1000-6.
[http://dx.doi.org/10.1021/bm701017z]
[189]
de Lima JM, Sarmento RR, de Souza JR, et al. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. BioMed Res Int 2015; 2015247965
[190]
Gondim BLC, Castellano LRC, de Castro RD, et al. Effect of chitosan nanoparticles on the inhibition of Candida spp. biofilm on denture base surface. Arch Oral Biol 2018; 94: 99-107.
[191]
de Carvalho FG, Magalhães TC, Teixeira NM, et al. Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater Sci Eng C 2019; 104109885
[192]
Dobrovolskaya IP, Yudin VE, Popryadukhin PV, et al. Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers. Carbohydr Polym 2018; 194: 260-6.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.074]
[193]
Spasova M, Manolova N, Paneva D, Rashkov I. Preparation of chitosan-containing nanofibres by electrospinning of chitosan/ poly(ethylene oxide) blend solutions. e-Polymers 2004; 4.
[194]
Qasim SB, Zafar MS, Najeeb S, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 2018; 19: 407.
[http://dx.doi.org/10.3390/ijms19020407]
[195]
Rodgers UR, Weiss AS. Cellular interactions with elastin. Pathol Biol (Paris) 2005; 53: 390-8.
[http://dx.doi.org/10.1016/j.patbio.2004.12.022]
[196]
Duca L, Floquet N, Alix AJ, Haye B, Debelle L. Elastin as a matrikine. Crit Rev Oncol Hematol 2004; 49: 235-44.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.007]
[197]
Boraschi D, Castellano LRC, Italiani P. Editorial: Interaction of nanomaterials with the immune system: role in nanosafety and nanomedicine. Front Immunol 2017; 8: 1688.
[198]
Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials 2007; 28: 4378-98.
[http://dx.doi.org/10.1016/j.biomaterials.2007.06.025]
[199]
Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq 2010; 156: 76-81.
[http://dx.doi.org/10.1016/j.molliq.2010.04.016]
[200]
Yamaguchi K, Prabakaran M, Ke M, et al. Highly dispersed nanoscale hydroxyapatite on cellulose nanofibers for bone regeneration. Mater Lett 2016; 168: 56-61.
[http://dx.doi.org/10.1016/j.matlet.2016.01.010]
[201]
de Lima R, Mattoso L, Feitosa C, et al. Evaluation of the genotoxicity of cellulose nanofibers. Int J Nanomedicine 2012; 7: 3555.
[http://dx.doi.org/10.2147/IJN.S30596]
[202]
Souza SF, Mariano M, Reis D, Lombello CB, Ferreira M, Sain M. Cell interactions and cytotoxic studies of cellulose nanofibers from Curauá natural fibers. Carbohydr Polym 2018; 201: 87-95.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.056]
[203]
Liu G, Gu Z, Hong Y, Cheng L, Li C. Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. J Control Release 2017; 252: 95-107.
[204]
Hong Y, Liu G, Gu Z. Recent advances of starch-based excipients used in extended-release tablets: a review. Drug Deliv 2016; 23: 12-20.
[http://dx.doi.org/10.3109/10717544.2014.913324]
[205]
Wang S, Copeland L. Effect of acid hydrolysis on starch structure and functionality: a review. Crit Rev Food Sci Nutr 2015; 55(8): 1081-97.
[http://dx.doi.org/10.1080/10408398.2012.684551] [PMID: 24915341]
[206]
Selvaraj S, Thangam R, Fathima NN. Electrospinning of casein nanofibers with silver nanoparticles for potential biomedical applications. Int J Biol Macromol 2018; 120: 1674-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.177]
[207]
Panja S, Khatua DK, Halder M. Effect of casein on pure lecithin liposome: mixed biomacromolecular system for providing superior stabilization to hydrophobic molecules. Colloids Surf B Biointerfaces 2019; 180: 298-305.
[208]
Juvonen H, Smolander M, Boer H, Pere J, Buchert J, Peltonen J. Film formation and surface properties of enzymatically crosslinked casein films. J Appl Polym Sci 2011; 119: 2205-13.
[http://dx.doi.org/10.1002/app.32943]
[209]
Guan L, Yan S, Liu X, Li X, Gao G. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion. J Mater Chem 2019; 7: 5230-6.
[http://dx.doi.org/10.1039/C9TB01340G]
[210]
Li Q, Zhao Z. Acid and rennet-induced coagulation behavior of casein micelles with modified structure. Food Chem 2019; 291: 231-8.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.028]
[211]
Peñalva R, Morales J, González-Navarro C, et al. Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. Int J Mol Sci 2018; 19: 2816.
[212]
Narayanan S, Mony U, Vijaykumar DK, Koyakutty M, Paul-Prasanth B, Menon D. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine 2015; 11: 1399-406.
[213]
Bora A, Mishra P. Characterization of casein and casein-silver conjugated nanoparticle containing multifunctional (pectin-sodium alginate/casein) bilayer film. J Food Sci Technol 2016; 53: 3704-14.
[214]
Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release 2014; 189: 108-22.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.036]
[215]
Miyoshi T, Toyohara K, Minematsu H. Preparation of ultrafine fibrous zein membranes via electrospinning. Polym Int 2005; 54: 1187-90.
[http://dx.doi.org/10.1002/pi.1829]
[216]
Yao C, Li Y, Wu F. Polyvinyl alcohol-modified Pithecellobium clypearia Benth herbal residue fiberpolypropylene composites. Polym Compos 2016; 37: 915-24.
[217]
Torres-Giner S, Gimenez E, Lagaron JM. Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocoll 2008; 22: 601-14.
[http://dx.doi.org/10.1016/j.foodhyd.2007.02.005]
[218]
Ramji K, Shah RN. Electrospun soy protein nanofiber scaffolds for tissue regeneration. J Biomater Appl 2014; 29: 411-22.
[http://dx.doi.org/10.1177/0885328214530765]
[219]
Tokudome Y, Nakamura K, Kage M, Todo H, Sugibayashi K, Hashimoto F. Effects of soybean peptide and collagen peptide on collagen synthesis in normal human dermal fibroblasts. Int J Food Sci Nutr 2012; 63: 689-95.
[http://dx.doi.org/10.3109/09637486.2011.652597]
[220]
Ahn S, Chantre CO, Gannon AR, et al. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv Healthc Mater 2018; 71701175
[221]
Mouriño V, Newby P, Pishbin F, Cattalini JP, Lucangioli S, Boccaccini AR. Physicochemical, biological and drug-release properties of gallium crosslinked alginate/nanoparticulate bioactive glass composite films. Soft Matter 2011; 7: 6705-12.
[222]
Geltmeyer J, De Roo J, Van den Broeck F, Martins JC, De Buysser K, De Clerck K. The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers. J Sol-Gel Sci Technol 2016; 77: 453-62.
[http://dx.doi.org/10.1007/s10971-015-3875-1]
[223]
Silva SS, Kundu B, Lu S, Reis RL, Kundu SC. Chinese oak tasar silkworm Antheraea pernyi silk proteins: current strategies and future perspectives for biomedical applications. Macromol Biosci Macromol Biosci 2019; 19(3)e1800252
[http://dx.doi.org/10.1002/mabi.201800252] [PMID: 30294916]
[224]
Hivechi A, Hajir Bahrami S, Siegel RA. Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers. Int J Biol Macromol 2019; 124: 411-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.214]
[225]
Browe DC, Mahon OR, Díaz-Payno PJ, et al. Glyoxal cross-linking of solubilized extracellular matrix to produce highly porous, elastic, and chondro-permissive scaffolds for orthopedic tissue engineering. J Biomed Mater Res A 2019; 107(10): 2222-34.
[http://dx.doi.org/10.1002/jbm.a.36731]
[226]
Zha Z, Teng W, Markle V, Dai Z, Wu X. Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers 2012; 97: 1026-36.
[227]
Biofibers H, Meier C, Welland ME. Wet-spinning of amyloid protein nanofibers into multifunctional. Biomacromolecules 2011; 12: 3453-9.
[228]
Jiang L, Li X, Liu L, Zhang Q. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res Lett 2013; 8: 1-66.
[http://dx.doi.org/10.1186/1556-276X-8-66]
[229]
Rossi S, Sandri G, Caramella CM. Buccal drug delivery: a challenge already won? Drug Discov Today Technol 2005; 2: 59-65.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.018]
[230]
Costa ES, Mansur HS. Preparation and characterization of chitosan/poly(vinyl alcohol) blend chemically crosslinked by glutaraldehyde for tissue engineering application. Quim Nova 2008; 31: 1460-6.
[231]
Shan YH, Peng LH, Liu X, Chen X, Xiong J, Gao JQ. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int J Pharm 2015; 479: 291-301.
[232]
Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008; 29: 4532-9.
[233]
Chen C, Chuanbao C, Xilan M, Yin T, Hesun Z. Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method. Polymer 2006; 47: 6322-7.
[http://dx.doi.org/10.1016/j.polymer.2006.07.009]
[234]
Kim HW, Yu HS, Lee HH. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A 2008; 87: 25-32.
[235]
Timin AS, Muslimov AR, Zyuzin MV, et al. Multifunctional scaffolds with improved antimicrobial properties and osteogenicity based on piezoelectric electrospun fibers decorated with bioactive composite microcapsules. ACS Appl Mater Interfaces 2018; 10: 34849-68.
[236]
Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 1993; 14: 359-64.
[237]
Oréfice RL, Pereira M de M, Mansur HS. Biomateriais: Fundamentos e Aplicações II. Rio de Janeiro, RJ: Cultura Médica 2012.
[238]
Rattier B, Hoffman A, Schoen F, Lemons J. Biomaterials Science. An Introduction to Materials in Medicine. Elsevier 1997; 22: 26.
[239]
Riss TL, Moravec RA, Niles AL, et al. Cell Viability Assays 2004- 2013.
[240]
Mahajan SD, Law W-C, Aalinkeel R, et al. Nanoparticle-mediated targeted delivery of antiretrovirals to the brain.nanomedicine infect dis immunother diagnostics, antifibrotics, toxicol gene med. 509th ed. methods in enzymology. Methods Enzymol 2012; 509: 41-60.
[http://dx.doi.org/10.1016/B978-0-12-391858-1.00003-4]
[241]
Marshall NJ, Goodwin CJ, Holt SJ. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul 1995; 5: 69-84.
[242]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63.
[243]
ISO 10993-5:2009. Biological evaluation of medical devices - Part 5: tests for in vitro cytotoxicity. Ed. Geneva. 2009; 3.
[244]
ASTM F813-07. Standard Practice for Direct Contact Cell Culture Evaluation of Materials for Medical Devices 2012.
[245]
Lancaster MA, Huch M. Disease modelling in human organoids. Dis Model Mech 2019; 12dmm039347
[http://dx.doi.org/10.1242/dmm.039347]
[246]
Xia Y, Izpisua Belmonte JC. Design approaches for generating organ constructs. Cell Stem Cell 2019; 24: 877-94.
[247]
Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods 2014; 11: 847-54.
[http://dx.doi.org/10.1038/nmeth.3016]
[248]
Knight GT, Lundin BF, Iyer N, et al. Engineering induction of singular neural rosette emergence within hPSC-derived tissues. eLife 2018; 7 pii e37549
[http://dx.doi.org/10.7554/eLife.37549]
[249]
Jones JR. Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater 2015; 23: S53-82.
[250]
Brain JD, Curran MA, Donaghey T, Molina RM. Biologic responses to nanomaterials depend on exposure, clearance, and material characteristics. Nanotoxicology 2009; 3: 174-80.
[http://dx.doi.org/10.1080/17435390802654628]
[251]
McCarthy M, O’Dell F. English Vocabulary In Use. 2010 vol 27.
[252]
Handy RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 2008; 17: 315-25.
[253]
do Amaral DF, Guerra V, Motta AGC. de Melo e Silva D, Rocha TL. Ecotoxicity of nanomaterials in amphibians: a critical review. Sci Total Environ 2019; 686: 332-44.
[254]
Yslas EI, Ibarra LE, Peralta DO, Barbero CA, Rivarola VA, Bertuzzi ML. Polyaniline nanofibers: acute toxicity and teratogenic effect on Rhinella arenarum embryos. Chemosphere 2012; 87: 1374-80.
[255]
Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 2008; 83: 13-34.
[256]
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 1995; 203: 253-310.
[http://dx.doi.org/10.1002/aja.1002030302]
[257]
Ašmonaite G, Boyer S, de Souza KB, Wassmur B, Sturve J. Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquat Toxicol 2016; 173: 143-53.
[258]
Clemente Z, Castro VLSS, Moura MAM, Jonsson CM, Fraceto LF. Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat Toxicol 2014; 147: 129-39.
[http://dx.doi.org/10.1016/j.aquatox.2013.12.024]
[259]
Dumitrescu E, Karunaratne DP, Prochaska MK, Liu X, Wallace KN, Andreescu S. Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish. Environ Pollut 2017; 229: 439-47.
[http://dx.doi.org/10.1016/j.envpol.2017.06.016]
[260]
Teijeiro-Valiño C, Yebra-Pimentel E, Guerra-Varela J, Csaba N, Alonso MJ, Sánchez L. Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model. Nanomedicine (Lond) 2017; 12: 2069-82.
[http://dx.doi.org/10.2217/nnm-2017-0078]
[261]
Yoo MH, Rah YC, Choi J, et al. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int J Pediatr Otorhinolaryngol 2016; 83: 168-74.
[http://dx.doi.org/10.1016/j.ijporl.2016.02.013]
[262]
Padilla S, Corum D, Padnos B, et al. Zebrafish developmental screening of the ToxCastTM Phase I chemical library. Reprod Toxicol 2012; 33: 174-87.
[263]
Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Biomater Nanobiotechnol 2016; 14(1): 65.
[http://dx.doi.org/10.1186/s12951-016-0217-6]
[264]
Pereira MM, Mouton L, Yéprémian C, et al. Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnology 2014; 12: 15.
[http://dx.doi.org/10.1186/1477-3155-12-15]
[265]
Tincani FH, Cestari MM. The end justifies the means: rethinking ecotoxicological studies. Integr Environ Assess Manag 2018; 14: 434-5.
[266]
Kim S, Chen J, Cheng T, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 2019; 47: D1102-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy