Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

An Update on the Immunological, Metabolic and Genetic Mechanisms in Drug Hypersensitivity Reactions

Author(s): Cristobalina Mayorga*, Maria I. Montañez, Raquel Jurado-Escobar, Violeta Gil-Ocaña and Jose A. Cornejo-García

Volume 25, Issue 36, 2019

Page: [3813 - 3828] Pages: 16

DOI: 10.2174/1381612825666191105122414

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Drug hypersensitivity reactions (DHRs) represent a major burden on the healthcare system since their diagnostic and management are complex. As they can be influenced by individual genetic background, it is conceivable that the identification of variants in genes potentially involved could be used in genetic testing for the prevention of adverse effects during drug administration. Most genetic studies on severe DHRs have documented HLA alleles as risk factors and some mechanistic models support these associations, which try to shed light on the interaction between drugs and the immune system during lymphocyte presentation. In this sense, drugs are small molecules that behave as haptens, and currently three hypotheses try to explain how they interact with the immune system to induce DHRs: the hapten hypothesis, the direct pharmacological interaction of drugs with immune receptors hypothesis (p-i concept), and the altered self-peptide repertoire hypothesis. The interaction will depend on the nature of the drug and its reactivity, the metabolites generated and the specific HLA alleles. However, there is still a need of a better understanding of the different aspects related to the immunological mechanism, the drug determinants that are finally presented as well as the genetic factors for increasing the risk of suffering DHRs. Most available information on the predictive capacity of genetic testing refers to abacavir hypersensitivity and anticonvulsants-induced severe cutaneous reactions.

Better understanding of the underlying mechanisms of DHRs will help us to identify the drugs likely to induce DHRs and to manage patients at risk.

Keywords: Drug hypersensitivity, immunologic mechanisms, genetic markers, HLA, drug metabolism, anticonvulsants-induced.

[1]
Johansson SG, Bieber T, Dahl R, et al. Revised nomenclature for allergy for global use: report of the nomenclature review committee of the world allergy organization, october 2003. J Allergy Clin Immunol 2004; 113(5): 832-6.
[http://dx.doi.org/10.1016/j.jaci.2003.12.591] [PMID: 15131563]
[2]
Gomes ER, Demoly P. Epidemiology of hypersensitivity drug reactions. Curr Opin Allergy Clin Immunol 2005; 5(4): 309-16.
[http://dx.doi.org/10.1097/01.all.0000173785.81024.33] [PMID: 15985812]
[3]
Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18,820 patients. BMJ 2004; 329(7456): 15-9.
[http://dx.doi.org/10.1136/bmj.329.7456.15] [PMID: 15231615]
[4]
McNeil BD, Pundir P, Meeker S, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 2015; 519(7542): 237-41.
[http://dx.doi.org/10.1038/nature14022] [PMID: 25517090]
[5]
Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI drug allergy interest group position paper. Allergy 2016; 71(8): 1103-34.
[http://dx.doi.org/10.1111/all.12886] [PMID: 26991315]
[6]
Tanno LK, Torres MJ, Castells M, Demoly P. What can we learn in drug allergy management from world health organization’s international classifications? Allergy 2018; 73(5): 987-92.
[http://dx.doi.org/10.1111/all.13335] [PMID: 29105793]
[7]
Brockow K, Ardern-Jones MR, Mockenhaupt M, et al. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy 2019; 74(1): 14-27.
[http://dx.doi.org/10.1111/all.13562] [PMID: 30028512]
[8]
Thong BY, Tan TC. Epidemiology and risk factors for drug allergy. Br J Clin Pharmacol 2011; 71(5): 684-700.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03774.x] [PMID: 21480948]
[9]
Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med 2003; 139(8): 683-93.
[http://dx.doi.org/10.7326/0003-4819-139-8-200310210-00012] [PMID: 14568857]
[10]
Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy 2019; 74(8): 1457-71.
[http://dx.doi.org/10.1111/all.13765] [PMID: 30843233]
[11]
Demoly P, Adkinson NF, Brockow K, et al. International consensus on drug allergy. Allergy 2014; 69(4): 420-37.
[http://dx.doi.org/10.1111/all.12350] [PMID: 24697291]
[12]
Pirmohamed M, Friedmann PS, Molokhia M, et al. Phenotype standardization for immune-mediated drug-induced skin injury. Clin Pharmacol Ther 2011; 89(6): 896-901.
[http://dx.doi.org/10.1038/clpt.2011.79] [PMID: 21562486]
[13]
Raghavan R, Eknoyan G. Acute interstitial nephritis - a reappraisal and update. Clin Nephrol 2014; 82(3): 149-62.
[http://dx.doi.org/10.5414/CN10838] [PMID: 25079860]
[14]
Rees A. Cross dendritic cells anger T cells after kidney injury. J Am Soc Nephrol 2009; 20(1): 3-5.
[http://dx.doi.org/10.1681/ASN.2008111200] [PMID: 19118144]
[15]
Sanderson JP, Naisbitt DJ, Farrell J, et al. Sulfamethoxazole and its metabolite nitroso sulfamethoxazole stimulate dendritic cell costimulatory signaling. J Immunol 2007; 178(9): 5533-42.
[http://dx.doi.org/10.4049/jimmunol.178.9.5533] [PMID: 17442935]
[16]
Zhang X, Sharma AM, Uetrecht J. Identification of danger signals in nevirapine-induced skin rash. Chem Res Toxicol 2013; 26(9): 1378-83.
[http://dx.doi.org/10.1021/tx400232s] [PMID: 23947594]
[17]
Rodriguez-Pena R, Lopez S, Mayorga C, et al. Potential involvement of dendritic cells in delayed-type hypersensitivity reactions to beta-lactams. J Allergy Clin Immunol 2006; 118(4): 949-56.
[http://dx.doi.org/10.1016/j.jaci.2006.07.013] [PMID: 17030251]
[18]
Lopez S, Torres MJ, Rodríguez-Pena R, et al. Lymphocyte proliferation response in patients with delayed hypersensitivity reactions to heparins. Br J Dermatol 2009; 160(2): 259-65.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08875.x] [PMID: 18945304]
[19]
Antunez C, Barbaud A, Gomez E, et al. Recognition of iodixanol by dendritic cells increases the cellular response in delayed allergic reactions to contrast media. Clin Exp Allergy 2011; 41(5): 657-64.
[http://dx.doi.org/10.1111/j.1365-2222.2010.03693.x] [PMID: 21375605]
[20]
Uetrecht J. Immune-mediated adverse drug reactions. Chem Res Toxicol 2009; 22(1): 24-34.
[http://dx.doi.org/10.1021/tx800389u] [PMID: 19149477]
[21]
Pichler WJ. The p-i Concept: pharmacological interaction of drugs with immune receptors. World Allergy Organ J 2008; 1(6): 96-102.
[http://dx.doi.org/10.1097/WOX.0b013e3181778282] [PMID: 23282405]
[22]
Faulkner L, Meng X, Park BK, Naisbitt DJ. The importance of hapten-protein complex formation in the development of drug allergy. Curr Opin Allergy Clin Immunol 2014; 14(4): 293-300.
[http://dx.doi.org/10.1097/ACI.0000000000000078] [PMID: 24936850]
[23]
Aun MV, Kalil J, Giavina-Bianchi P. Drug-induced anaphylaxis. Immunol Allergy Clin North Am 2017; 37(4): 629-41.
[http://dx.doi.org/10.1016/j.iac.2017.06.002] [PMID: 28965631]
[24]
Halevy S, Ghislain PD, Mockenhaupt M, et al. Allopurinol is the most common cause of stevens-johnson syndrome and toxic epidermal necrolysis in europe and israel. J Am Acad Dermatol 2008; 58(1): 25-32.
[http://dx.doi.org/10.1016/j.jaad.2007.08.036] [PMID: 17919772]
[25]
Roujeau JC, Kelly JP, Naldi L, et al. Medication use and the risk of stevens-johnson syndrome or toxic epidermal necrolysis. N Engl J Med 1995; 333(24): 1600-7.
[http://dx.doi.org/10.1056/NEJM199512143332404] [PMID: 7477195]
[26]
Mockenhaupt M, Viboud C, Dunant A, et al. Stevens-johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol 2008; 128(1): 35-44.
[http://dx.doi.org/10.1038/sj.jid.5701033] [PMID: 17805350]
[27]
Cacoub P, Musette P, Descamps V, et al. The DRESS syndrome: a literature review. Am J Med 2011; 124(7): 588-97.
[http://dx.doi.org/10.1016/j.amjmed.2011.01.017] [PMID: 21592453]
[28]
Chang SL, Huang YH, Yang CH, Hu S, Hong HS. Clinical manifestations and characteristics of patients with acute generalized exanthematous pustulosis in asia. Acta Derm Venereol 2008; 88(4): 363-5.
[PMID: 18709306]
[29]
Sidoroff A, Dunant A, Viboud C, et al. Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (EuroSCAR). Br J Dermatol 2007; 157(5): 989-96.
[http://dx.doi.org/10.1111/j.1365-2133.2007.08156.x] [PMID: 17854366]
[30]
Björnsson ES. Hepatotoxicity by Drugs: the most common implicated agents. Int J Mol Sci 2016; 17(2): 224.
[http://dx.doi.org/10.3390/ijms17020224] [PMID: 26861310]
[31]
Uetrecht J. Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol Toxicol 2007; 47: 513-39.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105150] [PMID: 16879083]
[32]
Phillips EJ, Mallal SA. HLA and drug-induced toxicity. Curr Opin Mol Ther 2009; 11(3): 231-42.
[PMID: 19479656]
[33]
Lavergne SN, Park BK, Naisbitt DJ. The roles of drug metabolism in the pathogenesis of T-cell-mediated drug hypersensitivity. Curr Opin Allergy Clin Immunol 2008; 8(4): 299-307.
[http://dx.doi.org/10.1097/ACI.0b013e3283079c64] [PMID: 18596585]
[34]
Pirmohamed M, Naisbitt DJ, Gordon F, Park BK. The danger hypothesis-potential role in idiosyncratic drug reactions. Toxicology 2002; 181-182: 55-63.
[http://dx.doi.org/10.1016/S0300-483X(02)00255-X] [PMID: 12505285]
[35]
Pichler WJ. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol 2002; 2(4): 301-5.
[http://dx.doi.org/10.1097/00130832-200208000-00003] [PMID: 12130944]
[36]
Landsteiner K, Jacobs J. Studies on the sensitization of animals with simple chemical compounds. J Exp Med 1935; 61(5): 643-56.
[http://dx.doi.org/10.1084/jem.61.5.643] [PMID: 19870383]
[37]
Martin SF, Esser PR, Schmucker S, et al. T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci 2010; 67(24): 4171-84.
[http://dx.doi.org/10.1007/s00018-010-0495-3] [PMID: 20717835]
[38]
Blanca M, Mayorga C, Perez E, et al. Determination of IgE antibodies to the benzyl penicilloyl determinant. A comparison between poly-L-lysine and human serum albumin as carriers. J Immunol Methods 1992; 153(1-2): 99-105.
[http://dx.doi.org/10.1016/0022-1759(92)90311-G] [PMID: 1517607]
[39]
Mayorga C, Obispo T, Jimeno L, et al. Epitope mapping of beta-lactam antibiotics with the use of monoclonal antibodies. Toxicology 1995; 97(1-3): 225-34.
[http://dx.doi.org/10.1016/0300-483X(94)02983-2] [PMID: 7716788]
[40]
Meng X, Al-Attar Z, Yaseen FS, et al. Definition of the nature and hapten threshold of the β-Lactam antigen required for t cell activation in vitro and in patients. J Immunol 2017; 198(11): 4217-27.
[http://dx.doi.org/10.4049/jimmunol.1700209] [PMID: 28438900]
[41]
Whitaker P, Meng X, Lavergne SN, et al. Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis. J Immunol 2011; 187(1): 200-11.
[http://dx.doi.org/10.4049/jimmunol.1100647] [PMID: 21606251]
[42]
Gefen T, Vaya J, Khatib S, et al. The effect of haptens on protein-carrier immunogenicity. Immunology 2015; 144(1): 116-26.
[http://dx.doi.org/10.1111/imm.12356] [PMID: 25041614]
[43]
Meng X, Jenkins RE, Berry NG, et al. Direct evidence for the formation of diastereoisomeric benzylpenicilloyl haptens from benzylpenicillin and benzylpenicillenic acid in patients. J Pharmacol Exp Ther 2011; 338(3): 841-9.
[http://dx.doi.org/10.1124/jpet.111.183871] [PMID: 21680886]
[44]
Jenkins RE, Meng X, Elliott VL, Kitteringham NR, Pirmohamed M, Park BK. Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. Proteomics Clin Appl 2009; 3(6): 720-9.
[http://dx.doi.org/10.1002/prca.200800222] [PMID: 21136982]
[45]
Ariza A, Garzon D, Abánades DR, et al. Protein haptenation by amoxicillin: high resolution mass spectrometry analysis and identification of target proteins in serum. J Proteomics 2012; 77: 504-20.
[http://dx.doi.org/10.1016/j.jprot.2012.09.030] [PMID: 23041134]
[46]
Sánchez-Gómez FJ, González-Morena JM, Vida Y, et al. Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. Allergy 2017; 72(3): 385-96.
[http://dx.doi.org/10.1111/all.12958] [PMID: 27319758]
[47]
Manchanda T, Hess D, Dale L, Ferguson SG, Rieder MJ. Haptenation of sulfonamide reactive metabolites to cellular proteins. Mol Pharmacol 2002; 62(5): 1011-26.
[http://dx.doi.org/10.1124/mol.62.5.1011] [PMID: 12391263]
[48]
Illing PT, Purcell AW, McCluskey J. The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics 2017; 69(8-9): 617-30.
[http://dx.doi.org/10.1007/s00251-017-1007-5] [PMID: 28695285]
[49]
Schnyder B, Burkhart C, Schnyder-Frutig K, et al. Recognition of sulfamethoxazole and its reactive metabolites by drug-specific CD4+ T cells from allergic individuals. J Immunol 2000; 164(12): 6647-54.
[http://dx.doi.org/10.4049/jimmunol.164.12.6647] [PMID: 10843725]
[50]
Pichler WJ, Beeler A, Keller M, et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int 2006; 55(1): 17-25.
[http://dx.doi.org/10.2332/allergolint.55.17] [PMID: 17075282]
[51]
Adam J, Pichler WJ, Yerly D. Delayed drug hypersensitivity: models of T-cell stimulation. Br J Clin Pharmacol 2011; 71(5): 701-7.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03764.x] [PMID: 21480949]
[52]
Pichler WJ, Adam J, Watkins S, Wuillemin N, Yun J, Yerly D. Drug hypersensitivity: how drugs stimulate t cells via pharmacological interaction with immune receptors. Int Arch Allergy Immunol 2015; 168(1): 13-24.
[http://dx.doi.org/10.1159/000441280] [PMID: 26524432]
[53]
Pichler WJ, Hausmann O. Classification of drug hypersensitivity into allergic, p-i, and pseudo-allergic forms. Int Arch Allergy Immunol 2016; 171(3-4): 166-79.
[http://dx.doi.org/10.1159/000453265] [PMID: 27960170]
[54]
Chessman D, Kostenko L, Lethborg T, et al. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 2008; 28(6): 822-32.
[http://dx.doi.org/10.1016/j.immuni.2008.04.020] [PMID: 18549801]
[55]
Ostrov DA, Grant BJ, Pompeu YA, et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci USA 2012; 109(25): 9959-64.
[http://dx.doi.org/10.1073/pnas.1207934109] [PMID: 22645359]
[56]
Illing PT, Vivian JP, Dudek NL, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 2012; 486(7404): 554-8.
[http://dx.doi.org/10.1038/nature11147] [PMID: 22722860]
[57]
Pavlos R, Mallal S, Ostrov D, Pompeu Y, Phillips E. Fever, rash, and systemic symptoms: understanding the role of virus and HLA in severe cutaneous drug allergy. J Allergy Clin Immunol Pract 2014; 2(1): 21-33.
[http://dx.doi.org/10.1016/j.jaip.2013.11.005] [PMID: 24565765]
[58]
Adam J, Wuillemin N, Watkins S, et al. Abacavir induced T cell reactivity from drug naïve individuals shares features of allo-immune responses. PLoS One 2014; 9(4)e95339
[http://dx.doi.org/10.1371/journal.pone.0095339] [PMID: 24751900]
[59]
Emmerson BT, Hazelton RA, Frazer IH. Some adverse reactions to allopurinol may be mediated by lymphocyte reactivity to oxypurinol. Arthritis Rheum 1988; 31(3): 436-40.
[http://dx.doi.org/10.1002/art.1780310318] [PMID: 3358806]
[60]
Braden GL, Warzynski MJ, Golightly M, Ballow M. Cell-mediated immunity in allopurinol-induced hypersensitivity. Clin Immunol Immunopathol 1994; 70(2): 145-51.
[http://dx.doi.org/10.1006/clin.1994.1022] [PMID: 8299230]
[61]
Lockard O Jr, Harmon C, Nolph K, Irvin W. Allergic reaction to allopurinol with cross-reactivity to oxypurinol. Ann Intern Med 1976; 85(3): 333-5.
[http://dx.doi.org/10.7326/0003-4819-85-3-333] [PMID: 134655]
[62]
Lin CH, Chen JK, Ko TM, et al. Immunologic basis for allopurinol-induced severe cutaneous adverse reactions: HLA-B*58:01-restricted activation of drug-specific T cells and molecular interaction. J Allergy Clin Immunol 2015; 135(4): 1063-5.
[63]
Wang C-W, Dao R-L, Chung W-H. Immunopathogenesis and risk factors for allopurinol severe cutaneous adverse reactions. Curr Opin Allergy Clin Immunol 2016; 16(4): 339-45.
[http://dx.doi.org/10.1097/ACI.0000000000000286] [PMID: 27362322]
[64]
Yun J, Mattsson J, Schnyder K, et al. Allopurinol hypersensitivity is primarily mediated by dose-dependent oxypurinol-specific T cell response. Clin Exp Allergy 2013; 43(11): 1246-55.
[http://dx.doi.org/10.1111/cea.12184] [PMID: 24152157]
[65]
Hande KR, Noone RM, Stone WJ. Severe allopurinol toxicity. Description and guidelines for prevention in patients with renal insufficiency. Am J Med 1984; 76(1): 47-56.
[http://dx.doi.org/10.1016/0002-9343(84)90743-5] [PMID: 6691361]
[66]
Cribb AE, Spielberg SP. Sulfamethoxazole is metabolized to the hydroxylamine in humans. Clin Pharmacol Ther 1992; 51(5): 522-6.
[http://dx.doi.org/10.1038/clpt.1992.57] [PMID: 1587066]
[67]
Reilly TP, Lash LH, Doll MA, Hein DW, Woster PM, Svensson CK. A role for bioactivation and covalent binding within epidermal keratinocytes in sulfonamide-induced cutaneous drug reactions. J Invest Dermatol 2000; 114(6): 1164-73.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00985.x] [PMID: 10844561]
[68]
Roychowdhury S, Vyas PM, Svensson CK. Formation and uptake of arylhydroxylamine-haptenated proteins in human dendritic cells. Drug Metab Dispos 2007; 35(4): 676-81.
[http://dx.doi.org/10.1124/dmd.106.013680] [PMID: 17220235]
[69]
Sanderson JP, Naisbitt DJ, Farrell J, et al. Sulfamethoxazole and its metabolite nitroso sulfamethoxazole stimulate dendritic cell costimulatory signaling. J Immunol 2007; 178(9): 5533-42.
[70]
Naisbitt DJ, Hough SJ, Gill HJ, Pirmohamed M, Kitteringham NR, Park BK. Cellular disposition of sulphamethoxazole and its metabolites: implications for hypersensitivity. Br J Pharmacol 1999; 126(6): 1393-407.
[http://dx.doi.org/10.1038/sj.bjp.0702453] [PMID: 10217534]
[71]
Burkhart C, von Greyerz S, Depta JP, et al. Influence of reduced glutathione on the proliferative response of sulfamethoxazole-specific and sulfamethoxazole-metabolite-specific human CD4+ T-cells. Br J Pharmacol 2001; 132(3): 623-30.
[http://dx.doi.org/10.1038/sj.bjp.0703845] [PMID: 11159714]
[72]
Elsheikh A, Castrejon L, Lavergne SN, et al. Enhanced antigenicity leads to altered immunogenicity in sulfamethoxazole-hypersensitive patients with cystic fibrosis. J Allergy Clin Immunol 2011; 127(6): 1543-51.
[http://dx.doi.org/10.1016/j.jaci.2010.12.1119]
[73]
Levine BB, Ovary Z. Studies on the mechanism of the formation of the penicillin antigen. III. The N-(D-alpha-benzylpenicilloyl) group as an antigenic determinant responsible for hypersensitivity to penicillin G. J Exp Med 1961; 114(114): 875-904.
[http://dx.doi.org/10.1084/jem.114.6.875] [PMID: 14464604]
[74]
Batchelor FR, Dewdney JM, Gazzard D. Penicillin allergy: the formation of the penicilloyl determinant. Nature 1965; 206(982): 362-4.
[http://dx.doi.org/10.1038/206362a0] [PMID: 5835701]
[75]
Ariza A, Mayorga C, Fernandez TD, et al. Hypersensitivity reactions to β-lactams: relevance of hapten-protein conjugates. J Investig Allergol Clin Immunol 2015; 25(1): 12-25.
[PMID: 25898690]
[76]
Faulkner L, Meng X, Park BK, Naisbitt DJ. The importance of hapten-protein complex formation in the development of drug allergy. Curr Opin Allergy Clin Immunol 2014; 14(4): 293-300.
[http://dx.doi.org/10.1097/ACI.0000000000000078] [PMID: 24936850]
[77]
Gonzalez-Morena JM, Montanez MI, Aldini G, Sanchez-Gomez FJ, Perez-Sala D. Adduct formation and context factors in drug hypersensitivity: insight from proteomic studies. Curr Pharm Des 2016; 22(45): 6748-58.
[http://dx.doi.org/10.2174/1381612822666160927113748] [PMID: 27779087]
[78]
Martin-Serrano A, Barbero N, Agundez JA, Vida Y, Perez-Inestrosa E, Montanez MI. New advances in the study of IgE drug recognition. Curr Pharm Des 2016; 22(45): 6759-72.
[http://dx.doi.org/10.2174/1381612822666160921142231] [PMID: 27655415]
[79]
Montañez MI, Ariza A, Mayorga C, Fernandez T, Torres M. Cross-reactivity in betalactam allergy: alternative treatments. Curr Treat Options Allergy 2015; 2: 141-54.
[http://dx.doi.org/10.1007/s40521-015-0050-4]
[80]
Ariza A, Montañez MI, Pérez-Sala D. Proteomics in immunological reactions to drugs. Curr Opin Allergy Clin Immunol 2011; 11(4): 305-12.
[http://dx.doi.org/10.1097/ACI.0b013e3283489ae5] [PMID: 21659862]
[81]
Torres MJ, Montañez MI, Ariza A, et al. The role of IgE recognition in allergic reactions to amoxicillin and clavulanic acid. Clin Exp Allergy 2016; 46(2): 264-74.
[http://dx.doi.org/10.1111/cea.12689] [PMID: 26662186]
[82]
Venemalm L. Pyrazinone conjugates as potential cephalosporin allergens. Bioorg Med Chem Lett 2001; (14): 1869-70.
[83]
Jenkins RE, Yaseen FS, Monshi MM, et al. β-Lactam antibiotics form distinct haptenic structures on albumin and activate drug-specific T-lymphocyte responses in multiallergic patients with cystic fibrosis. Chem Res Toxicol 2013; 26(6): 963-75.
[http://dx.doi.org/10.1021/tx400124m] [PMID: 23668298]
[84]
Sanchez-Sancho F, Perez-Inestrosa E, Suau R, et al. Synthesis, characterization and immunochemical evaluation of cephalosporin antigenic determinants. J Mol Recognit 2003; 16: 148-56.
[85]
Perez-Inestrosa E, Suau R, Montañez MI, et al. Cephalosporin chemical reactivity and its immunological implications. Curr Opin Allergy Clin Immunol 2005; 5(4): 323-30.
[http://dx.doi.org/10.1097/01.all.0000173788.73401.69] [PMID: 15985814]
[86]
Venemalm L. Pyrazinone conjugates as potential cephalosporin allergens. Bioorg Med Chem Lett 2001; 11(14): 1869-70.
[http://dx.doi.org/10.1016/S0960-894X(01)00348-1] [PMID: 11459649]
[87]
Montannez MI, Mayorga C, Torres MJ, Ariza A, Blanca M, Perez-Inestrosa E. Synthetic approach to gain insight into antigenic determinants of cephalosporins: in vitro studies of chemical structure-IgE molecular recognition relationships. Chem Res Toxicol 2011; 24(5): 706-17.
[http://dx.doi.org/10.1021/tx100446g] [PMID: 21425867]
[88]
Sánchez-Sancho F, Perez-Inestrosa E, Suau R, et al. Synthesis, characterization and immunochemical evaluation of cephalosporin antigenic determinants. J Mol Recognit 2003; 16(3): 148-56.
[http://dx.doi.org/10.1002/jmr.621] [PMID: 12833570]
[89]
Edwards RG, Dewdney JM, Dobrzanski RJ, Lee D. Immunogenicity and allergenicity studies on two beta-lactam structures, a clavam, clavulanic acid, and a carbapenem: structure-activity relationships. Int Arch Allergy Appl Immunol 1988; 85(2): 184-9.
[http://dx.doi.org/10.1159/000234500] [PMID: 3338858]
[90]
Barbero N, Fernández-Santamaría R, Mayorga C, et al. Identification of an antigenic determinant of clavulanic acid responsible for IgE-mediated reactions. Allergy 2019; 74(8): 1490-501.
[http://dx.doi.org/10.1111/all.13761] [PMID: 30829415]
[91]
Meng X, Earnshaw CJ, Tailor A, et al. Amoxicillin and clavulanate form chemically and immunologically distinct multiple haptenic structures in patients. Chem Res Toxicol 2016; 29(10): 1762-72.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00253] [PMID: 27603302]
[92]
Kenny JR, Maggs JL, Meng X, et al. Syntheses and Characterization of the Acyl Glucuronide and Hydroxy Metabolites of Diclofenac. J Med Chem 2004; 47(11): 2816-25.
[93]
Agúndez JA, Martínez C, Benítez J. Metabolism of aminopyrine and derivatives in man: in vivo study of monomorphic and polymorphic metabolic pathways. Xenobiotica 1995; 25(4): 417-27.
[http://dx.doi.org/10.3109/00498259509061862] [PMID: 7645307]
[94]
Agúndez JA, Carrillo JA, Martínez C, Benítez J. Aminopyrine metabolism in man: the acetylation of aminoantipyrine cosegregates with acetylation of caffeine. Ther Drug Monit 1995; 17(1): 1-5.
[http://dx.doi.org/10.1097/00007691-199502000-00001] [PMID: 7725368]
[95]
Ariza A, García-Martín E, Salas M, et al. Pyrazolones metabolites are relevant for identifying selective anaphylaxis to metamizole. Sci Rep 2016; 6: 23845.
[http://dx.doi.org/10.1038/srep23845] [PMID: 27030298]
[96]
Hammond TG, Meng X, Jenkins RE, et al. Mass spectrometric characterization of circulating covalent protein adducts derived from a drug acyl glucuronide metabolite: multiple albumin adductions in diclofenac patients. J Pharmacol Exp Ther 2014; 350(2): 387-402.
[http://dx.doi.org/10.1124/jpet.114.215079] [PMID: 24902585]
[97]
Kenny JR, Maggs JL, Meng X, et al. Syntheses and characterization of the acyl glucuronide and hydroxy metabolites of diclofenac. J Med Chem 2004; 47(11): 2816-25.
[http://dx.doi.org/10.1021/jm030891w] [PMID: 15139759]
[98]
Naisbitt DJ, Sanderson LS, Meng X, Stachulski AV, Clarke SE, Park BK. Investigation of the immunogenicity of diclofenac and diclofenac metabolites. Toxicol Lett 2007; 168(1): 45-50.
[http://dx.doi.org/10.1016/j.toxlet.2006.10.014] [PMID: 17123753]
[99]
Boerma JS, Dragovic S, Vermeulen NPE, Commandeur JNM. Mass spectrometric characterization of protein adducts of multiple P450-dependent reactive intermediates of diclofenac to human glutathione-S-transferase P1-1. Chem Res Toxicol 2012; 25(11): 2532-41.
[http://dx.doi.org/10.1021/tx300334w] [PMID: 22998212]
[100]
Lertratanangkoon K, Horning MG. Metabolism of carbamazepine. Drug Metab Dispos 1982; 10(1): 1-10.
[PMID: 6124375]
[101]
Pearce RE, Lu W, Wang Y, Uetrecht JP, Correia MA, Leeder JS. Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos 2008; 36(8): 1637-49.
[http://dx.doi.org/10.1124/dmd.107.019562] [PMID: 18463198]
[102]
Kang P, Liao M, Wester MR, Leeder JS, Pearce RE, Correia MA. CYP3A4-Mediated carbamazepine (CBZ) metabolism: formation of a covalent CBZ-CYP3A4 adduct and alteration of the enzyme kinetic profile. Drug Metab Dispos 2008; 36(3): 490-9.
[http://dx.doi.org/10.1124/dmd.107.016501] [PMID: 18096676]
[103]
Fricke-Galindo I. LLerena A, Jung-Cook H, López-López M. Carbamazepine adverse drug reactions. Expert Rev Clin Pharmacol 2018; 11(7): 705-18.
[http://dx.doi.org/10.1080/17512433.2018.1486707] [PMID: 29898616]
[104]
Wu Y, Sanderson JP, Farrell J, et al. Activation of T cells by carbamazepine and carbamazepine metabolites. J Allergy Clin Immunol 2006; 118(1): 233-41.
[http://dx.doi.org/10.1016/j.jaci.2006.03.005] [PMID: 16815161]
[105]
Naisbitt DJ, Britschgi M, Wong G, et al. Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones. Mol Pharmacol 2003; 63(3): 732-41.
[http://dx.doi.org/10.1124/mol.63.3.732] [PMID: 12606784]
[106]
Lichtenfels M, Farrell J, Ogese MO, et al. HLA restriction of carbamazepine-specific T-Cell clones from an HLA-A*31:01-positive hypersensitive patient. Chem Res Toxicol 2014; 27(2): 175-7.
[http://dx.doi.org/10.1021/tx400460w] [PMID: 24476427]
[107]
Oussalah A, Mayorga C, Blanca M, et al. Genetic variants associated with drugs-induced immediate hypersensitivity reactions: a PRISMA-compliant systematic review. Allergy 2016; 71(4): 443-62.
[http://dx.doi.org/10.1111/all.12821] [PMID: 26678823]
[108]
Guéant JL, Romano A, Cornejo-Garcia JA, et al. HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. J Allergy Clin Immunol 2015; 135(1): 253-9.
[http://dx.doi.org/10.1016/j.jaci.2014.07.047] [PMID: 25224099]
[109]
Cornejo-García JA, Romano A, Guéant-Rodríguez RM, et al. A non-synonymous polymorphism in galectin-3 lectin domain is associated with allergic reactions to beta-lactam antibiotics. Pharmacogenomics J 2016; 16(1): 79-82.
[http://dx.doi.org/10.1038/tpj.2015.24] [PMID: 25869013]
[110]
Perkins JR, Acosta-Herrera M, Plaza-Serón MC, et al. Polymorphisms in CEP68 gene associated with risk of immediate selective reactions to non-steroidal anti-inflammatory drugs. Pharmacogenomics J 2019; 19(2): 191-9.
[http://dx.doi.org/10.1038/s41397-018-0038-0] [PMID: 30093714]
[111]
Kim JH, Park BL, Cheong HS, et al. Genome-wide and follow-up studies identify CEP68 gene variants associated with risk of aspirin-intolerant asthma. PLoS One 2010; 5(11)e13818
[http://dx.doi.org/10.1371/journal.pone.0013818] [PMID: 21072201]
[112]
Cornejo-García JA, Flores C, Plaza-Serón MC, et al. Variants of CEP68 gene are associated with acute urticaria/angioedema induced by multiple non-steroidal anti-inflammatory drugs. PLoS One 2014; 9(3)e90966
[http://dx.doi.org/10.1371/journal.pone.0090966] [PMID: 24618698]
[113]
Negrini S, Becquemont L. HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. Pharmacogenomics 2017; 18(15): 1441-57.
[http://dx.doi.org/10.2217/pgs-2017-0090] [PMID: 29017379]
[114]
Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002; 359(9308): 727-32.
[http://dx.doi.org/10.1016/S0140-6736(02)07873-X] [PMID: 11888582]
[115]
Hetherington S, Hughes AR, Mosteller M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002; 359(9312): 1121-2.
[http://dx.doi.org/10.1016/S0140-6736(02)08158-8] [PMID: 11943262]
[116]
Stekler J, Maenza J, Stevens C, et al. Abacavir hypersensitivity reaction in primary HIV infection. AIDS 2006; 20(9): 1269-74.
[http://dx.doi.org/10.1097/01.aids.0000232234.19006.a2] [PMID: 16816555]
[117]
Saag M, Balu R, Phillips E, et al. High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis 2008; 46(7): 1111-8.
[http://dx.doi.org/10.1086/529382] [PMID: 18444831]
[118]
Moragas M, Belloso WH, Baquedano MS, et al. Prevalence of HLA-B*57:01 allele in Argentinean HIV-1 infected patients. Tissue Antigens 2015; 86(1): 28-31.
[http://dx.doi.org/10.1111/tan.12575] [PMID: 25922880]
[119]
Arrieta-Bolaños E, Madrigal JA, Marsh SG, Shaw BE, Salazar-Sánchez L. The frequency of HLA-B(*)57:01 and the risk of abacavir hypersensitivity reactions in the majority population of Costa Rica. Hum Immunol 2014; 75(11): 1092-6.
[http://dx.doi.org/10.1016/j.humimm.2014.09.011] [PMID: 25286002]
[120]
Park WB, Choe PG, Song KH, et al. Should HLA-B*5701 screening be performed in every ethnic group before starting abacavir? Clin Infect Dis 2009; 48(3): 365-7.
[http://dx.doi.org/10.1086/595890] [PMID: 19115972]
[121]
Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N. Association of HLA-B*5801 allele and allopurinol-induced stevens-johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med Genet 2011; 12: 118.
[http://dx.doi.org/10.1186/1471-2350-12-118] [PMID: 21906289]
[122]
Cheng L, Xiong Y, Qin CZ, et al. HLA-B*58:01 is strongly associated with allopurinol-induced severe cutaneous adverse reactions in han chinese patients: a multicentre retrospective case-control clinical study. Br J Dermatol 2015; 173(2): 555-8.
[http://dx.doi.org/10.1111/bjd.13688] [PMID: 26104483]
[123]
Lonjou C, Borot N, Sekula P, et al. A European study of HLA-B in stevens-johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 2008; 18(2): 99-107.
[http://dx.doi.org/10.1097/FPC.0b013e3282f3ef9c] [PMID: 18192896]
[124]
Gonçalo M, Coutinho I, Teixeira V, et al. HLA-B*58:01 is a risk factor for allopurinol-induced DRESS and stevens-johnson syndrome/toxic epidermal necrolysis in a Portuguese population. Br J Dermatol 2013; 169(3): 660-5.
[http://dx.doi.org/10.1111/bjd.12389] [PMID: 23600531]
[125]
Wu R, Cheng YJ, Zhu LL, et al. Impact of HLA-B*58:01 allele and allopurinol-induced cutaneous adverse drug reactions: evidence from 21 pharmacogenetic studies. Oncotarget 2016; 7(49): 81870-9.
[http://dx.doi.org/10.18632/oncotarget.13250] [PMID: 27835909]
[126]
Hung SI, Chung WH, Jee SH, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006; 16(4): 297-306.
[http://dx.doi.org/10.1097/01.fpc.0000199500.46842.4a] [PMID: 16538176]
[127]
Man CB, Kwan P, Baum L, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in han chinese. Epilepsia 2007; 48(5): 1015-8.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01022.x] [PMID: 17509004]
[128]
Nguyen DV, Chu HC, Nguyen DV, et al. HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in Vietnamese. Asia Pac Allergy 2015; 5(2): 68-77.
[http://dx.doi.org/10.5415/apallergy.2015.5.2.68] [PMID: 25938071]
[129]
Kaniwa N, Saito Y, Aihara M, et al. HLA-B locus in japanese patients with anti-epileptics and allopurinol-related stevens-johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 2008; 9(11): 1617-22.
[http://dx.doi.org/10.2217/14622416.9.11.1617] [PMID: 19018717]
[130]
Ikeda H, Takahashi Y, Yamazaki E, et al. HLA class I markers in japanese patients with carbamazepine-induced cutaneous adverse reactions. Epilepsia 2010; 51(2): 297-300.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02269.x] [PMID: 19694795]
[131]
Lonjou C, Thomas L, Borot N, et al. A marker for stevens-johnson syndrome...: ethnicity matters. Pharmacogenomics J 2006; 6(4): 265-8.
[http://dx.doi.org/10.1038/sj.tpj.6500356] [PMID: 16415921]
[132]
Cheung YK, Cheng SH, Chan EJ, Lo SV, Ng MH, Kwan P. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in han chinese. Epilepsia 2013; 54(7): 1307-14.
[http://dx.doi.org/10.1111/epi.12217] [PMID: 23692434]
[133]
Chang CC, Ng CC, Too CL, et al. Association of HLA-B*15:13 and HLA-B*15:02 with phenytoin-induced severe cutaneous adverse reactions in a malay population. Pharmacogenomics J 2017; 17(2): 170-3.
[http://dx.doi.org/10.1038/tpj.2016.10] [PMID: 26927288]
[134]
An DM, Wu XT, Hu FY, Yan B, Stefan H, Zhou D. Association study of lamotrigine-induced cutaneous adverse reactions and HLA-B*1502 in a han chinese population. Epilepsy Res 2010; 92(2-3): 226-30.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.10.006] [PMID: 21071176]
[135]
Shi YW, Min FL, Liu XR, et al. Hla-B alleles and lamotrigine-induced cutaneous adverse drug reactions in the han chinese population. Basic Clin Pharmacol Toxicol 2011; 109(1): 42-6.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00681.x] [PMID: 21306565]
[136]
Deng Y, Li S, Zhang L, Jin H, Zou X. Association between HLA alleles and lamotrigine-induced cutaneous adverse drug reactions in Asian populations: a meta-analysis. Seizure 2018; 60: 163-71.
[http://dx.doi.org/10.1016/j.seizure.2018.06.024] [PMID: 30015149]
[137]
Ramírez E, Bellón T, Tong HY, et al. Significant HLA class I type associations with aromatic antiepileptic drug (AED)-induced SJS/TEN are different from those found for the same AED-induced DRESS in the spanish population. Pharmacol Res 2017; 115: 168-78.
[http://dx.doi.org/10.1016/j.phrs.2016.11.027] [PMID: 27888155]
[138]
Alfirevic A, Vilar FJ, Alsbou M, et al. TNF, LTA, HSPA1L and HLA-DR gene polymorphisms in HIV-positive patients with hypersensitivity to cotrimoxazole. Pharmacogenomics 2009; 10(4): 531-40.
[http://dx.doi.org/10.2217/pgs.09.6] [PMID: 19374512]
[139]
Reinhart JM, Motsinger-Reif A, Dickey A, Yale S, Trepanier LA. Genome-wide association study in immunocompetent patients with delayed hypersensitivity to sulfonamide antimicrobials. PLoS One 2016; 11(6)e0156000
[http://dx.doi.org/10.1371/journal.pone.0156000] [PMID: 27272151]
[140]
Mockenhaupt M, Wang CW, Hung SI, et al. HLA-B*57:01 confers genetic susceptibility to carbamazepine-induced SJS/TEN in Europeans. Allergy 2019; 74(11): 2227-30.
[http://dx.doi.org/10.1111/all.13821] [PMID: 30972788]
[141]
Chow JC, Huang CW, Fang CW, Wu YJ, Tsai JJ. Lamotrigine-induced hypersensitivity syndrome in a han chinese patient with the HLA-B 5801 genotype. Neurol Sci 2013; 34(1): 117-9.
[http://dx.doi.org/10.1007/s10072-012-0947-7] [PMID: 22258364]
[142]
McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011; 364(12): 1134-43.
[http://dx.doi.org/10.1056/NEJMoa1013297] [PMID: 21428769]
[143]
Ozeki T, Mushiroda T, Yowang A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in japanese population. Hum Mol Genet 2011; 20(5): 1034-41.
[http://dx.doi.org/10.1093/hmg/ddq537] [PMID: 21149285]
[144]
Ksouda K, Affes H, Mahfoudh N, et al. HLA-A*31:01 and carbamazepine-induced DRESS syndrom in a sample of north african population. Seizure 2017; 53: 42-6.
[http://dx.doi.org/10.1016/j.seizure.2017.10.018] [PMID: 29125944]
[145]
Kim H, Chadwick L, Alzaidi Y, Picker J, Poduri A, Manzi S. HLA-A*31:01 and Oxcarbazepine-Induced DRESS in a patient with seizures and complete DCX deletion. Pediatrics 2018; 141(Suppl. 5): S434-8.
[http://dx.doi.org/10.1542/peds.2017-1361] [PMID: 29610167]
[146]
Genin E, Chen DP, Hung SI, et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics J 2014; 14(3): 281-8.
[http://dx.doi.org/10.1038/tpj.2013.40] [PMID: 24322785]
[147]
Anjum N, Polak ME, Ardern-Jones M, Cooper HL. Presence of the HLA-A*3101 allele in a familial case of drug reaction with eosinophilia and systemic symptoms, secondary to carbamazepine. Clin Exp Dermatol 2014; 39(3): 307-9.
[http://dx.doi.org/10.1111/ced.12275] [PMID: 24635066]
[148]
Zhang FR, Liu H, Irwanto A, et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N Engl J Med 2013; 369(17): 1620-8.
[http://dx.doi.org/10.1056/NEJMoa1213096] [PMID: 24152261]
[149]
Wang H, Yan L, Zhang G, et al. Association between HLA-B*1301 and dapsone-induced hypersensitivity reactions among leprosy patients in China. J Invest Dermatol 2013; 133(11): 2642-4.
[http://dx.doi.org/10.1038/jid.2013.192] [PMID: 23604100]
[150]
Hoogeveen RM, van der Bom T, de Boer HH, et al. A lethal case of the dapsone hypersensitivity syndrome involving the myocardium. Neth J Med 2016; 74(2): 89-92.
[PMID: 26951355]
[151]
Cai F, Lucas M, Yun J. Dapsone-induced drug reaction with eosinophilia and systemic symptoms associated with HLA-B*13:01. Intern Med J 2018; 48(3): 363-4.
[http://dx.doi.org/10.1111/imj.13730] [PMID: 29512326]
[152]
Mizumoto K, Sumikawa Y, Niihara H, Morita E. Case of carbamazepine-induced hypersensitivity syndrome associated with human leukocyte antigen-A*3101. J Dermatol 2012; 39(9): 791-2.
[http://dx.doi.org/10.1111/j.1346-8138.2011.01421.x] [PMID: 22168592]
[153]
Wu X, Yang F, Chen S, et al. Clinical, viral and genetic characteristics of drug reaction with eosinophilia and systemic symptoms (DRESS) in shanghai, china. Acta Derm Venereol 2018; 98(4): 401-5.
[http://dx.doi.org/10.2340/00015555-2867] [PMID: 29242946]
[154]
Yang F, Gu B, Zhang L, et al. HLA-B*13:01 is associated with salazosulfapyridine-induced drug rash with eosinophilia and systemic symptoms in chinese han population. Pharmacogenomics 2014; 15(11): 1461-9.
[http://dx.doi.org/10.2217/pgs.14.69] [PMID: 25303297]
[155]
Thomas M, Hopkins C, Duffy E, et al. Association of the HLA-B*53:01 allele with drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome during treatment of HIV infection with raltegravir. Clin Infect Dis 2017; 64(9): 1198-203.
[http://dx.doi.org/10.1093/cid/cix096] [PMID: 28369189]
[156]
Rutkowski K, Taylor C, Wagner A. HLA B62 as a possible risk factor for drug reaction with eosinophilia and systemic symptoms to piperacillin/tazobactam. J Allergy Clin Immunol Pract 2017; 5(3): 829-30.
[http://dx.doi.org/10.1016/j.jaip.2016.10.008] [PMID: 27914818]
[157]
Navarini AA, Valeyrie-Allanore L, Setta-Kaffetzi N, et al. Rare variations in IL36RN in severe adverse drug reactions manifesting as acute generalized exanthematous pustulosis. J Invest Dermatol 2013; 133(7): 1904-7.
[http://dx.doi.org/10.1038/jid.2013.44] [PMID: 23358093]
[158]
Nakai N, Sugiura K, Akiyama M, Katoh N. Acute generalized exanthematous pustulosis caused by dihydrocodeine phosphate in a patient with psoriasis vulgaris and a heterozygous IL36RN mutation. JAMA Dermatol 2015; 151(3): 311-5.
[http://dx.doi.org/10.1001/jamadermatol.2014.3002] [PMID: 25409173]
[159]
Chadli Z, Ladhari C, Kerkeni E, et al. Codeine-induced acute generalized exanthematous pustulosis without IL36RN mutations. Pharmacogenomics 2018; 19(11): 889-93.
[http://dx.doi.org/10.2217/pgs-2017-0200] [PMID: 29914290]
[160]
Podlipnik S, Castellanos-Moreira R, Florez-Enrich H, Arostegui JI, Mascaró JM Jr. Acute generalized exanthematous pustulosis and polyarthritis associated with a novel CARD14 mutation. Australas J Dermatol 2018; 59(1): e70-3.
[http://dx.doi.org/10.1111/ajd.12669] [PMID: 28776328]
[161]
Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Semin Liver Dis 2009; 29(4): 400-11.
[http://dx.doi.org/10.1055/s-0029-1240009] [PMID: 19826974]
[162]
Huang YS, Chern HD, Su WJ, et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35(4): 883-9.
[http://dx.doi.org/10.1053/jhep.2002.32102] [PMID: 11915035]
[163]
Cho HJ, Koh WJ, Ryu YJ, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in korean patients with pulmonary tuberculosis. Tuberculosis (Edinb) 2007; 87(6): 551-6.
[http://dx.doi.org/10.1016/j.tube.2007.05.012] [PMID: 17950035]
[164]
Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am J Respir Crit Care Med 2002; 166(7): 916-9.
[http://dx.doi.org/10.1164/rccm.2108091] [PMID: 12359646]
[165]
Kindmark A, Jawaid A, Harbron CG, et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 2008; 8(3): 186-95.
[http://dx.doi.org/10.1038/sj.tpj.6500458] [PMID: 17505501]
[166]
Hautekeete ML, Horsmans Y, Van Waeyenberge C, et al. HLA association of amoxicillin-clavulanate-induced hepatitis. Gastroenterology 1999; 117(5): 1181-6.
[http://dx.doi.org/10.1016/S0016-5085(99)70404-X] [PMID: 10535882]
[167]
O’Donohue J, Oien KA, Donaldson P, et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 2000; 47(5): 717-20.
[http://dx.doi.org/10.1136/gut.47.5.717] [PMID: 11034591]
[168]
Andrade RJ, Lucena MI, Alonso A, et al. HLA class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease. Hepatology 2004; 39(6): 1603-12.
[http://dx.doi.org/10.1002/hep.20215] [PMID: 15185301]
[169]
Lucena MI, Molokhia M, Shen Y, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 2011; 141(1): 338-47.
[http://dx.doi.org/10.1053/j.gastro.2011.04.001] [PMID: 21570397]
[170]
Cirulli ET, Nicoletti P, Abramson K, et al. A Missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology 2019; 156(6): 1707-16.
[http://dx.doi.org/10.1053/j.gastro.2019.01.034] [PMID: 30664875]
[171]
Daly AK, Donaldson PT, Bhatnagar P, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009; 41(7): 816-9.
[http://dx.doi.org/10.1038/ng.379] [PMID: 19483685]
[172]
Nicoletti P, Aithal GP, Chamberlain TC, et al. Drug-induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles. Clin Pharmacol Ther 2019; 106(1): 245-53.
[http://dx.doi.org/10.1002/cpt.1375] [PMID: 30661239]
[173]
Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007; 132(1): 272-81.
[http://dx.doi.org/10.1053/j.gastro.2006.11.023] [PMID: 17241877]
[174]
Hughes DA, Vilar FJ, Ward CC, Alfirevic A, Park BK, Pirmohamed M. Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics 2004; 14(6): 335-42.
[http://dx.doi.org/10.1097/00008571-200406000-00002] [PMID: 15247625]
[175]
Tangamornsuksan W, Lohitnavy O, Kongkaew C, et al. Association of HLA-B*5701 genotypes and abacavir-induced hypersensitivity reaction: a systematic review and meta-analysis. J Pharm Pharm Sci 2015; 18(1): 68-76.
[http://dx.doi.org/10.18433/J39S3T] [PMID: 25877443]
[176]
Small CB, Margolis DA, Shaefer MS, Ross LL. HLA-B*57:01 allele prevalence in HIV-infected North American subjects and the impact of allele testing on the incidence of abacavir-associated hypersensitivity reaction in HLA-B*57:01-negative subjects. BMC Infect Dis 2017; 17(1): 256.
[http://dx.doi.org/10.1186/s12879-017-2331-y] [PMID: 28399804]
[177]
Martin MA, Klein TE, Dong BJ, Pirmohamed M, Haas DW, Kroetz DL. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing. Clin Pharmacol Ther 2012; 91(4): 734-8.
[http://dx.doi.org/10.1038/clpt.2011.355] [PMID: 22378157]
[178]
Martin MA, Hoffman JM, Freimuth RR, et al. Clinical pharmacogenetics implementation consortium guidelines for hla-b genotype and abacavir dosing: 2014 update. Clin Pharmacol Ther 2014; 95(5): 499-500.
[http://dx.doi.org/10.1038/clpt.2014.38] [PMID: 24561393]
[179]
Ke CH, Chung WH, Tain YL, et al. Utility of human leukocyte antigen-B*58: 01 genotyping and patient outcomes. Pharmacogenet Genomics 2019; 29(1): 1-8.
[http://dx.doi.org/10.1097/FPC.0000000000000359] [PMID: 30379713]
[180]
Park DJ, Kang JH, Lee JW, et al. Cost-effectiveness analysis of HLA-B5801 genotyping in the treatment of gout patients with chronic renal insufficiency in korea. Arthritis Care Res (Hoboken) 2015; 67(2): 280-7.
[http://dx.doi.org/10.1002/acr.22409] [PMID: 25047754]
[181]
Ko TM, Tsai CY, Chen SY, et al. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in taiwan: national prospective cohort study. BMJ 2015; 351: h4848.
[http://dx.doi.org/10.1136/bmj.h4848] [PMID: 26399967]
[182]
Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*5801 testing in preventing allopurinol-induced SJS/TEN in Thai population. PLoS One 2014; 9(4)e94294
[http://dx.doi.org/10.1371/journal.pone.0094294] [PMID: 24732692]
[183]
Plumpton CO, Alfirevic A, Pirmohamed M, Hughes DA. Cost effectiveness analysis of HLA-B*58:01 genotyping prior to initiation of allopurinol for gout. Rheumatology (Oxford) 2017; 56(10): 1729-39.
[http://dx.doi.org/10.1093/rheumatology/kex253] [PMID: 28957559]
[184]
Ke CH, Chung WH, Wen YH, et al. Cost-effectiveness analysis for genotyping before allopurinol treatment to prevent severe cutaneous adverse drug reactions. J Rheumatol 2017; 44(6): 835-43.
[http://dx.doi.org/10.3899/jrheum.151476] [PMID: 28365572]
[185]
Saito Y, Stamp LK, Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther 2016; 99(1): 36-7.
[http://dx.doi.org/10.1002/cpt.161] [PMID: 26094938]
[186]
Tassaneeyakul W, Jantararoungtong T, Chen P, et al. Strong association between HLA-B*5801 and allopurinol-induced stevens-johnson syndrome and toxic epidermal necrolysis in a thai population. Pharmacogenet Genomics 2009; 19(9): 704-9.
[http://dx.doi.org/10.1097/FPC.0b013e328330a3b8] [PMID: 19696695]
[187]
Hung SI, Chung WH, Chen YT. HLA-B genotyping to detect carbamazepine-induced stevens-johnson syndrome: implications for personalizing medicine. Per Med 2005; 2(3): 225-37.
[http://dx.doi.org/10.2217/17410541.2.3.225] [PMID: 29793265]
[188]
Chen P, Lin JJ, Lu CS, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in taiwan. N Engl J Med 2011; 364(12): 1126-33.
[http://dx.doi.org/10.1056/NEJMoa1009717] [PMID: 21428768]
[189]
Tiamkao S, Jitpimolmard J, Sawanyawisuth K, Jitpimolmard S. Cost minimization of HLA-B*1502 screening before prescribing carbamazepine in thailand. Int J Clin Pharm 2013; 35(4): 608-12.
[http://dx.doi.org/10.1007/s11096-013-9777-9] [PMID: 23649893]
[190]
Caudle KE, Rettie AE, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther 2014; 96(5): 542-8.
[http://dx.doi.org/10.1038/clpt.2014.159] [PMID: 25099164]
[191]
Phillips EJ, Sukasem C, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther 2018; 103(4): 574-81.
[http://dx.doi.org/10.1002/cpt.1004] [PMID: 29392710]
[192]
Urban TJ, Nicoletti P, Chalasani N, et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B*35:02 as a risk factor. J Hepatol 2017; 67(1): 137-44.
[http://dx.doi.org/10.1016/j.jhep.2017.03.010] [PMID: 28323125]
[193]
Aithal GP. Pharmacogenetic testing in idiosyncratic drug-induced liver injury: current role in clinical practice. Liver Int 2015; 35(7): 1801-8.
[http://dx.doi.org/10.1111/liv.12836] [PMID: 25809692]
[194]
Tujios S, Fontana RJ. Mechanisms of drug-induced liver injury: from bedside to bench. Nat Rev Gastroenterol Hepatol 2011; 8(4): 202-11.
[http://dx.doi.org/10.1038/nrgastro.2011.22] [PMID: 21386809]
[195]
Welsh RM, Che JW, Brehm MA, Selin LK. Heterologous immunity between viruses. Immunol Rev 2010; 235(1): 244-66.
[http://dx.doi.org/10.1111/j.0105-2896.2010.00897.x] [PMID: 20536568]
[196]
Welsh RM, Selin LK. No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol 2002; 2(6): 417-26.
[http://dx.doi.org/10.1038/nri820] [PMID: 12093008]
[197]
van den Heuvel H, Heutinck KM, van der Meer-Prins EMW, et al. Allo-HLA cross-reactivities of cytomegalovirus-, influenza-, and varicella zoster virus-specific memory t cells are shared by different healthy individuals. Am J Transplant 2017; 17(8): 2033-44.
[http://dx.doi.org/10.1111/ajt.14279] [PMID: 28332333]
[198]
Pavlos R, White KD, Wanjalla C, Mallal SA, Phillips EJ. Severe delayed drug reactions: role of genetics and viral infections. Immunol Allergy Clin North Am 2017; 37(4): 785-815.
[http://dx.doi.org/10.1016/j.iac.2017.07.007] [PMID: 28965641]
[199]
Sanchez-Quintero MJ, Torres MJ, Blazquez AB, et al. Synergistic effect between amoxicillin and TLR ligands on dendritic cells from amoxicillin-delayed allergic patients. PLoS One 2013; 8(9)e74198
[http://dx.doi.org/10.1371/journal.pone.0074198] [PMID: 24066120]
[200]
White KD, Chung WH, Hung SI, Mallal S, Phillips EJ. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: the role of host, pathogens, and drug response. J Allergy Clin Immunol 2015; 136(2): 219-34.
[http://dx.doi.org/10.1016/j.jaci.2015.05.050] [PMID: 26254049]
[201]
Pavlos R, Mallal S, Ostrov D, et al. T cell-mediated hypersensitivity reactions to drugs. Annu Rev Med 2015; 66: 439-54.
[http://dx.doi.org/10.1146/annurev-med-050913-022745] [PMID: 25386935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy