Review Article

1型和2型糖尿病的前瞻性药物概述

卷 21, 期 5, 2020

页: [445 - 457] 页: 13

弟呕挨: 10.2174/1389450120666191031104653

价格: $65

conference banner
摘要

目的:本研究的目的是概述几种新兴的抗糖尿病分子。 背景:糖尿病是一种复杂的代谢紊乱,涉及各种水平的葡萄糖稳态失调。 β-胰腺细胞产生的胰岛素是葡萄糖代谢的主要调节剂,调节其在细胞内的消耗,从而导致能量的产生或作为糖原的存储。 β细胞的胰岛素分泌异常低,胰岛素不敏感性和胰岛素耐受性导致血浆葡萄糖水平升高,从而导致代谢并发症。上个世纪见证了科学界为开发抗糖尿病药物做出的巨大努力,这些努力导致发现了外源性胰岛素和各种口服抗糖尿病药物。 目的:尽管进行了详尽的抗糖尿病药物和治疗工作,但长期的血糖控制,降血糖危机,安全性问题,大规模的经济负担和副作用仍然是核心问题。 方法:过去十年见证了各种具有不同药代动力学和药效学特征的新型抗糖尿病药物的发展。这篇综述总结了其FDA批准和优缺点的详细信息。 结果:讨论了胰岛素地格曲克,钠-葡萄糖共转运蛋白2抑制剂,葡萄糖激酶激活剂,成纤维细胞生长因子21受体激动剂和GLP-1激动剂的显着特征。 结论:将来,这些新的抗糖尿病药物可能具有广泛的临床适用性。应该对这些新药进行其他的多中心临床研究。

关键词: 分子药物,糖尿病治疗剂,地高胰岛素,SGLT2抑制剂,葡萄糖激酶激活剂,FGF21受体激动剂,GLP激动剂。

图形摘要
[1]
Cheng AYY, Patel DK, Reid TS, Wyne K. Differentiating basal insulin preparations: understanding how they work explains why they are different. Adv Ther 2019; 36(5): 1018-30.
[http://dx.doi.org/10.1007/s12325-019-00925-6] [PMID: 30929185]
[2]
Heise T, Mathieu C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes Obes Metab 2017; 19(1): 3-12.
[http://dx.doi.org/10.1111/dom.12782] [PMID: 27593206]
[3]
Derewenda U, Derewenda Z, Dodson EJ, et al. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature 1989; 338(6216): 594-6.
[http://dx.doi.org/10.1038/338594a0] [PMID: 2648161]
[4]
Krüger P, Gilge G, Cabuk Y, Wollmer A. Cooperativity and intermediate states in the T----R-structural transformation of insulin. Biol Chem Hoppe Seyler 1990; 371(8): 669-73.
[http://dx.doi.org/10.1515/bchm3.1990.371.2.669] [PMID: 2206455]
[5]
Kaarsholm NC, Ko HC, Dunn MF. Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin. Biochemistry 1989; 28(10): 4427-35.
[http://dx.doi.org/10.1021/bi00436a046] [PMID: 2669954]
[6]
Steensgaard DB, Schluckebier G, Strauss HM, et al. Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 2013; 52(2): 295-309.
[http://dx.doi.org/10.1021/bi3008609] [PMID: 23256685]
[7]
Korsatko S, Deller S, Koehler G, et al. A comparison of the steady-state pharmacokinetic and pharmacodynamic profiles of 100 and 200 U/mL formulations of ultra-long-acting insulin degludec. Clin Drug Investig 2013; 33(7): 515-21.
[http://dx.doi.org/10.1007/s40261-013-0096-7] [PMID: 23749405]
[8]
Heise T, Nosek L, Bøttcher SG, Hastrup H, Haahr H. Ultra-long-acting insulin degludec has a flat and stable glucose-lowering effect in type 2 diabetes. Diabetes Obes Metab 2012; 14(10): 944-50.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01638.x] [PMID: 22726241]
[9]
Bailey TS, Pettus J, Roussel R, et al. Morning administration of 0.4U/kg/day insulin glargine 300U/mL provides less fluctuating 24-hour pharmacodynamics and more even pharmacokinetic profiles compared with insulin degludec 100U/mL in type 1 diabetes. Diabetes Metab 2018; 44(1): 15-21.
[http://dx.doi.org/10.1016/j.diabet.2017.10.001] [PMID: 29153485]
[10]
Birkeland KI, Home PD, Wendisch U, et al. Insulin degludec in type 1 diabetes: a randomized controlled trial of a new-generation ultra-long-acting insulin compared with insulin glargine. Diabetes Care 2011; 34(3): 661-5.
[http://dx.doi.org/10.2337/dc10-1925] [PMID: 21270174]
[11]
Heise T, Tack CJ, Cuddihy R, et al. A new-generation ultra-long-acting basal insulin with a bolus boost compared with insulin glargine in insulin-naive people with type 2 diabetes: a randomized, controlled trial. Diabetes Care 2011; 34(3): 669-74.
[http://dx.doi.org/10.2337/dc10-1905] [PMID: 21285389]
[12]
Zinman B, Fulcher G, Rao PV, et al. Insulin degludec, an ultra-long-acting basal insulin, once a day or three times a week versus insulin glargine once a day in patients with type 2 diabetes: a 16-week, randomised, open-label, phase 2 trial. Lancet 2011; 377(9769): 924-31.
[http://dx.doi.org/10.1016/S0140-6736(10)62305-7] [PMID: 21396703]
[13]
Home PD, Meneghini L, Wendisch U, et al. Improved health status with insulin degludec compared with insulin glargine in people with type 1 diabetes. Diabet Med 2012; 29(6): 716-20.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03547.x] [PMID: 22150786]
[14]
Heller S, Buse J, Fisher M, et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 1 diabetes (BEGIN Basal-Bolus Type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet 2012; 379(9825): 1489-97.
[http://dx.doi.org/10.1016/S0140-6736(12)60204-9] [PMID: 22521071]
[15]
Garber AJ, King AB, Del Prato S, et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 2 diabetes (BEGIN Basal-Bolus Type 2): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet 2012; 379(9825): 1498-507.
[http://dx.doi.org/10.1016/S0140-6736(12)60205-0] [PMID: 22521072]
[16]
Korsatko S, Deller S, Mader JK, et al. Ultra-long pharmacokinetic properties of insulin degludec are comparable in elderly subjects and younger adults with type 1 diabetes mellitus. Drugs Aging 2014; 31(1): 47-53.
[http://dx.doi.org/10.1007/s40266-013-0138-0] [PMID: 24263619]
[17]
Nakae R, Kusunoki Y, Katsuno T, et al. Medium-term effects of insulin degludec on patients with type 1 diabetes mellitus. Drugs R D 2014; 14(2): 133-8.
[http://dx.doi.org/10.1007/s40268-014-0048-6] [PMID: 24838615]
[18]
Urakami T, Kuwabara R, Aoki M, Okuno M, Suzuki J. Efficacy and safety of switching from insulin glargine to insulin degludec in young people with type 1 diabetes. Endocr J 2016; 63(2): 159-67.
[http://dx.doi.org/10.1507/endocrj.EJ15-0245] [PMID: 26632171]
[19]
Heise T, Bain SC, Bracken RM, et al. Similar risk of exercise-related hypoglycaemia for insulin degludec to that for insulin glargine in patients with type 1 diabetes: a randomized cross-over trial. Diabetes Obes Metab 2016; 18(2): 196-9.
[http://dx.doi.org/10.1111/dom.12588] [PMID: 26450456]
[20]
Heise T, Hermanski L, Nosek L, Feldman A, Rasmussen S, Haahr H. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes Metab 2012; 14(9): 859-64.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01627.x] [PMID: 22594461]
[21]
Heise T, Nørskov M, Nosek L, Kaplan K, Famulla S, Haahr HL. Insulin degludec: Lower day-to-day and within-day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes. Diabetes Obes Metab 2017; 19(7): 1032-9.
[http://dx.doi.org/10.1111/dom.12938] [PMID: 28295934]
[22]
Hirsch IB, Bode B, Courreges JP, et al. Insulin degludec/insulin aspart administered once daily at any meal, with insulin aspart at other meals versus a standard basal-bolus regimen in patients with type 1 diabetes: a 26-week, phase 3, randomized, open-label, treat-to-target trial. Diabetes Care 2012; 35(11): 2174-81.
[http://dx.doi.org/10.2337/dc11-2503] [PMID: 22933438]
[23]
Mathieu C, Hollander P, Miranda-Palma B, et al. Efficacy and safety of insulin degludec in a flexible dosing regimen vs insulin glargine in patients with type 1 diabetes (BEGIN: Flex T1): a 26-week randomized, treat-to-target trial with a 26-week extension. J Clin Endocrinol Metab 2013; 98(3): 1154-62.
[http://dx.doi.org/10.1210/jc.2012-3249] [PMID: 23393185]
[24]
Bode BW, Buse JB, Fisher M, et al. Insulin degludec improves glycaemic control with lower nocturnal hypoglycaemia risk than insulin glargine in basal-bolus treatment with mealtime insulin aspart in Type 1 diabetes (BEGIN(®) Basal-Bolus Type 1): 2-year results of a randomized clinical trial. Diabet Med 2013; 30(11): 1293-7.
[http://dx.doi.org/10.1111/dme.12243] [PMID: 23710902]
[25]
Koehler G, Heller S, Korsatko S, et al. Insulin degludec is not associated with a delayed or diminished response to hypoglycaemia compared with insulin glargine in type 1 diabetes: a double-blind randomised crossover study. Diabetologia 2014; 57(1): 40-9.
[http://dx.doi.org/10.1007/s00125-013-3056-0] [PMID: 24057153]
[26]
Davies M, Sasaki T, Gross JL, et al. Comparison of insulin degludec with insulin detemir in type 1 diabetes: a 1-year treat-to-target trial. Diabetes Obes Metab 2016; 18(1): 96-9.
[http://dx.doi.org/10.1111/dom.12573] [PMID: 26435472]
[27]
Nakamura T, Sakaguchi K, So A, et al. Effects of insulin degludec and insulin glargine on day-to-day fasting plasma glucose variability in individuals with type 1 diabetes: a multicentre, randomised, crossover study. Diabetologia 2015; 58(9): 2013-9.
[http://dx.doi.org/10.1007/s00125-015-3648-y] [PMID: 26044206]
[28]
Heise T, Nosek L, Klein O, Coester H, Svendsen AL, Haahr H. Insulin degludec/insulin aspart produces a dose-proportional glucose-lowering effect in subjects with type 1 diabetes mellitus. Diabetes Obes Metab 2015; 17(7): 659-64.
[http://dx.doi.org/10.1111/dom.12463] [PMID: 25772444]
[29]
Hirsch IB, Franek E, Mersebach H, Bardtrum L, Hermansen K. Safety and efficacy of insulin degludec/insulin aspart with bolus mealtime insulin aspart compared with standard basal-bolus treatment in people with Type 1 diabetes: 1-year results from a randomized clinical trial (BOOST® T1). Diabet Med 2017; 34(2): 167-73.
[http://dx.doi.org/10.1111/dme.13068] [PMID: 26773446]
[30]
Takahashi H, Nishimura R, Onda Y, Ando K, Tsujino D, Utsunomiya K. Comparison of glycemic variability in Japanese patients with type 1 diabetes receiving insulin degludec versus insulin detemir using continuous glucose monitoring: A randomized, cross-over, pilot study. Expert Opin Pharmacother 2017; 18(4): 335-42.
[http://dx.doi.org/10.1080/14656566.2017.1293652] [PMID: 28234565]
[31]
Onishi Y, Ono Y, Rabøl R, Endahl L, Nakamura S. Superior glycaemic control with once-daily insulin degludec/insulin aspart versus insulin glargine in Japanese adults with type 2 diabetes inadequately controlled with oral drugs: a randomized, controlled phase 3 trial. Diabetes Obes Metab 2013; 15(9): 826-32.
[http://dx.doi.org/10.1111/dom.12097] [PMID: 23557077]
[32]
Philis-Tsimikas A, Astamirova K, Gupta Y, et al. Similar glycaemic control with less nocturnal hypoglycaemia in a 38-week trial comparing the IDegAsp co-formulation with insulin glargine U100 and insulin aspart in basal insulin-treated subjects with type 2 diabetes mellitus. Diabetes Res Clin Pract 2019; 147: 157-65.
[http://dx.doi.org/10.1016/j.diabres.2018.10.024] [PMID: 30448451]
[33]
Evans M, Billings LK, Håkan-Bloch J, et al. An indirect treatment comparison of the efficacy of insulin degludec/liraglutide (IDegLira) and insulin glargine/lixisenatide (iGlarLixi) in patients with type 2 diabetes uncontrolled on basal insulin. J Med Econ 2018; 21(4): 340-7.
[http://dx.doi.org/10.1080/13696998.2017.1409228] [PMID: 29164973]
[34]
Gough SC, Bhargava A, Jain R, Mersebach H, Rasmussen S, Bergenstal RM. Low-volume insulin degludec 200 units/ml once daily improves glycemic control similarly to insulin glargine with a low risk of hypoglycemia in insulin-naive patients with type 2 diabetes: a 26-week, randomized, controlled, multinational, treat-to-target trial: the begin low volume trial. Diabetes Care 2013; 36(9): 2536-42.
[http://dx.doi.org/10.2337/dc12-2329] [PMID: 23715753]
[35]
Mu YM, Guo LX, Li L, et al. The efficacy and safety of insulin degludec versus insulin glargine in insulin-naive subjects with type 2 diabetes: results of a Chinese cohort from a multinational randomized controlled trial. Zhonghua Nei Ke Za Zhi 2017; 56(9): 660-6.
[PMID: 28870034]
[36]
Wysham C, Bhargava A, Chaykin L, et al. Effect of insulin degludec vs insulin glargine u100 on hypoglycemia in patients with type 2 diabetes: the switch 2 randomized clinical trial. JAMA 2017; 318(1): 45-56.
[http://dx.doi.org/10.1001/jama.2017.7117] [PMID: 28672317]
[37]
Aso Y, Suzuki K, Chiba Y, et al. Effect of insulin degludec versus insulin glargine on glycemic control and daily fasting blood glucose variability in insulin-naïve Japanese patients with type 2 diabetes: I’D GOT trial. Diabetes Res Clin Pract 2017; 130: 237-43.
[http://dx.doi.org/10.1016/j.diabres.2017.06.007] [PMID: 28651211]
[38]
Marso SP, McGuire DK, Zinman B, et al. Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes. N Engl J Med 2017; 377(8): 723-32.
[http://dx.doi.org/10.1056/NEJMoa1615692] [PMID: 28605603]
[39]
Hunt B, Mocarski M, Valentine WJ, Langer J. Evaluation of the long-term cost-effectiveness of IDegLira versus liraglutide added to basal insulin for patients with type 2 diabetes failing to achieve glycemic control on basal insulin in the USA. J Med Econ 2017; 20(7): 663-70.
[http://dx.doi.org/10.1080/13696998.2017.1301943] [PMID: 28294641]
[40]
Kumar A, Franek E, Wise J, Niemeyer M, Mersebach H, Simó R. Efficacy and safety of once-daily insulin degludec/insulin aspart versus insulin glargine (u100) for 52 weeks in insulin-naïve patients with type 2 diabetes: a randomized controlled trial. PLoS One 2016; 11(10)e0163350
[http://dx.doi.org/10.1371/journal.pone.0163350] [PMID: 27760129]
[41]
Franek E, Haluzík M, Canecki Varžić S, et al. Twice-daily insulin degludec/insulin aspart provides superior fasting plasma glucose control and a reduced rate of hypoglycaemia compared with biphasic insulin aspart 30 in insulin-naïve adults with Type 2 diabetes. Diabet Med 2016; 33(4): 497-505.
[http://dx.doi.org/10.1111/dme.12982] [PMID: 26435365]
[42]
American Diabetes Association. Approaches to glycemic treatment. Diabetes Care 2015; 38(Suppl.): S41-8.
[http://dx.doi.org/10.2337/dc15-S010] [PMID: 25537707]
[43]
Philis-Tsimikas A, Del Prato S, Satman I, et al. Effect of insulin degludec versus sitagliptin in patients with type 2 diabetes uncontrolled on oral antidiabetic agents. Diabetes Obes Metab 2013; 15(8): 760-6.
[http://dx.doi.org/10.1111/dom.12115] [PMID: 23577643]
[44]
Harris SB, Kocsis G, Prager R, et al. Safety and efficacy of IDegLira titrated once weekly versus twice weekly in patients with type 2 diabetes uncontrolled on oral antidiabetic drugs: DUAL VI randomized clinical trial. Diabetes Obes Metab 2017; 19(6): 858-65.
[http://dx.doi.org/10.1111/dom.12892] [PMID: 28124817]
[45]
Rodbard HW, Bode BW, Harris SB, et al. Safety and efficacy of insulin degludec/liraglutide (IDegLira) added to sulphonylurea alone or to sulphonylurea and metformin in insulin-naïve people with Type 2 diabetes: the DUAL IV trial. Diabet Med 2017; 34(2): 189-96.
[http://dx.doi.org/10.1111/dme.13256] [PMID: 27589252]
[46]
Haahr H, Fita EG, Heise T. A review of insulin degludec/insulin aspart: Pharmacokinetic and pharmacodynamic properties and their implications in clinical use. Clin Pharmacokinet 2017; 56(4): 339-54.
[http://dx.doi.org/10.1007/s40262-016-0455-7] [PMID: 27696221]
[47]
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91(2): 733-94.
[http://dx.doi.org/10.1152/physrev.00055.2009] [PMID: 21527736]
[48]
Vrhovac I, Balen Eror D, Klessen D, et al. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 2015; 467(9): 1881-98.
[http://dx.doi.org/10.1007/s00424-014-1619-7] [PMID: 25304002]
[49]
Rieg T, Masuda T, Gerasimova M, et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 2014; 306(2): F188-93.
[http://dx.doi.org/10.1152/ajprenal.00518.2013] [PMID: 24226519]
[50]
Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 2017; 60(2): 215-25.
[http://dx.doi.org/10.1007/s00125-016-4157-3] [PMID: 27878313]
[51]
Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 2011; 22(1): 104-12.
[http://dx.doi.org/10.1681/ASN.2010030246] [PMID: 20616166]
[52]
Baruah MP, Makkar BM, Ghatnatti VB, Mandal K. Sodium glucose co-transporter-2 inhibitor: benefits beyond glycemic control. Indian J Endocrinol Metab 2019; 23(1): 140-9.
[http://dx.doi.org/10.4103/ijem.IJEM_160_17] [PMID: 31016169]
[53]
Bolinder J, Ljunggren Ö, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 2014; 16(2): 159-69.
[http://dx.doi.org/10.1111/dom.12189] [PMID: 23906445]
[54]
Cefalu WT, Stenlöf K, Leiter LA, et al. Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes. Diabetologia 2015; 58(6): 1183-7.
[http://dx.doi.org/10.1007/s00125-015-3547-2] [PMID: 25813214]
[55]
Roden M, Merker L, Christiansen AV, et al. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: A double-blind extension of a Phase III randomized controlled trial. Cardiovasc Diabetol 2015; 14: 154.
[http://dx.doi.org/10.1186/s12933-015-0314-0] [PMID: 26701110]
[56]
Stenlöf K, Cefalu WT, Kim KA, et al. Long-term efficacy and safety of canagliflozin monotherapy in patients with type 2 diabetes inadequately controlled with diet and exercise: Findings from the 52-week CANTATA-M study. Curr Med Res Opin 2014; 30(2): 163-75.
[http://dx.doi.org/10.1185/03007995.2013.850066] [PMID: 24073995]
[57]
Handlon AL. Sodium glucose co-transporter 2 (SGLT2) inhibitors as potential antidiabetic agents. Expert Opin Ther Pat 2005; 15(11): 1531-40.
[http://dx.doi.org/10.1517/13543776.15.11.1531]
[58]
Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Res Rev 2005; 21(1): 31-8.
[http://dx.doi.org/10.1002/dmrr.532] [PMID: 15624123]
[59]
Katsuno K, Fujimori Y, Takemura Y, et al. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 2007; 320(1): 323-30.
[http://dx.doi.org/10.1124/jpet.106.110296] [PMID: 17050778]
[60]
Fujimori Y, Katsuno K, Nakashima I, Ishikawa-Takemura Y, Fujikura H, Isaji M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther 2008; 327(1): 268-76.
[http://dx.doi.org/10.1124/jpet.108.140210] [PMID: 18583547]
[61]
Isaji M. SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int Suppl 2011; (120): S14-9.
[http://dx.doi.org/10.1038/ki.2010.511] [PMID: 21358697]
[62]
Wang C, Zhou Y, Kong Z, et al. The renoprotective effects of sodium-glucose cotransporter 2 inhibitors versus placebo in patients with type 2 diabetes with or without prevalent kidney disease: A systematic review and meta-analysis. Diabetes Obes Metab 2018.
[http://dx.doi.org/10.1111/dom.13047] [PMID: 30565382]
[63]
Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 2018; 94(1): 26-39.
[http://dx.doi.org/10.1016/j.kint.2017.12.027] [PMID: 29735306]
[64]
Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 2017; 136(17): 1643-58.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030012] [PMID: 29061576]
[65]
Daniele G, Xiong J, Solis-Herrera C, et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care 2016; 39(11): 2036-41.
[http://dx.doi.org/10.2337/dc15-2688] [PMID: 27561923]
[66]
Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin Pharmacokinet 2015; 54(7): 691-708.
[http://dx.doi.org/10.1007/s40262-015-0264-4] [PMID: 25805666]
[67]
Laffel LMB, Tamborlane WV, Yver A, et al. Pharmacokinetic and pharmacodynamic profile of the sodium-glucose co-transporter-2 inhibitor empagliflozin in young people with Type 2 diabetes: a randomized trial. Diabet Med 2018; 35(8): 1096-104.
[http://dx.doi.org/10.1111/dme.13629] [PMID: 29655290]
[68]
Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet 2014; 53(1): 17-27.
[http://dx.doi.org/10.1007/s40262-013-0104-3] [PMID: 24105299]
[69]
Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 2011; 80(1): 17-28.
[http://dx.doi.org/10.1038/ki.2010.483] [PMID: 21150873]
[70]
Mathieu C, Dandona P, Gillard P, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the depict-2 study): 24-week results from a randomized controlled trial. Diabetes Care 2018; 41(9): 1938-46.
[http://dx.doi.org/10.2337/dc18-0623] [PMID: 30026335]
[71]
Eriksson JW, Lundkvist P, Jansson PA, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia 2018; 61(9): 1923-34.
[http://dx.doi.org/10.1007/s00125-018-4675-2] [PMID: 29971527]
[72]
Fernandez A, Warton EM, Schillinger D, et al. Language barriers and LDL-C/SBP control among Latinos with diabetes. Am J Manag Care 2018; 24(9): 405-10.
[PMID: 30222919]
[73]
Matthaei S, Catrinoiu D, Celiński A, et al. Randomized, double-blind trial of triple therapy with saxagliptin add-on to dapagliflozin plus metformin in patients with type 2 diabetes. Diabetes Care 2015; 38(11): 2018-24.
[http://dx.doi.org/10.2337/dc15-0811] [PMID: 26324329]
[74]
Coppenrath VA, Hydery T. Dapagliflozin/saxagliptin fixed-dose tablets: a new sodium-glucose cotransporter 2 and dipeptidyl peptidase 4 combination for the treatment of type 2 diabetes. Ann Pharmacother 2018; 52(1): 78-85.
[http://dx.doi.org/10.1177/1060028017731111] [PMID: 28884600]
[75]
Soga F, Tanaka H, Tatsumi K, et al. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol 2018; 17(1): 132.
[http://dx.doi.org/10.1186/s12933-018-0775-z] [PMID: 30296931]
[76]
Brown AJM, Lang C, McCrimmon R, Struthers A. Does dapagliflozin regress left ventricular hypertrophy in patients with type 2 diabetes? A prospective, double-blind, randomised, placebo-controlled study. BMC Cardiovasc Disord 2017; 17(1): 229.
[http://dx.doi.org/10.1186/s12872-017-0663-6] [PMID: 28835229]
[77]
Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 2018; 20(3): 479-87.
[http://dx.doi.org/10.1111/dom.13126] [PMID: 29024278]
[78]
Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the cvd-real study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 2017; 136(3): 249-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029190] [PMID: 28522450]
[79]
Furukawa S, Miyake T, Senba H, et al. The effectiveness of dapagliflozin for sleep-disordered breathing among Japanese patients with obesity and type 2 diabetes mellitus. Endocr J 2018; 65(9): 953-61.
[http://dx.doi.org/10.1507/endocrj.EJ17-0545] [PMID: 30047511]
[80]
Forst T, Alghdban MK, Fischer A, et al. Sequential treatment escalation with dapagliflozin and saxagliptin improves beta cell function in type 2 diabetic patients on previous metformin treatment: an exploratory mechanistic study. Horm Metab Res 2018; 50(5): 403-7.
[http://dx.doi.org/10.1055/a-0591-9442] [PMID: 29727906]
[81]
Ekholm E, Hansen L, Johnsson E, et al. Combined treatment with saxagliptin plus dapagliflozin reduces insulin levels by increased insulin clearance and improves β-cell function. Endocr Pract 2017; 23(3): 258-65.
[http://dx.doi.org/10.4158/EP161323.OR] [PMID: 27849380]
[82]
Yang W, Ma J, Li Y, et al. Dapagliflozin as add-on therapy in Asian patients with type 2 diabetes inadequately controlled on insulin with or without oral antihyperglycemic drugs: A randomized controlled trial. J Diabetes 2018; 10(7): 589-99.
[http://dx.doi.org/10.1111/1753-0407.12634] [PMID: 29215189]
[83]
González-Ortiz M, Grover-Páez F, Díaz-Cruz C. de J Patiño-Laguna A, López-Murillo LD, Martínez-Abundis E. Dapagliflozin administration on visceral adiposity, blood pressure and aortic central pressure in overweight patients without type 2 diabetes. Minerva Med 2017; 108(4): 384-6.
[PMID: 28677364]
[84]
Kato K, Suzuki K, Aoki C, et al. The effects of intermittent use of the SGLT-2 inhibitor, dapagliflozin, in overweight patients with type 2 diabetes in Japan: A randomized, crossover, controlled clinical trial. Expert Opin Pharmacother 2017; 18(8): 743-51.
[http://dx.doi.org/10.1080/14656566.2017.1317748] [PMID: 28426260]
[85]
Lundkvist P, Pereira MJ, Katsogiannos P, Sjöström CD, Johnsson E, Eriksson JW. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: Sustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes Metab 2017; 19(9): 1276-88.
[http://dx.doi.org/10.1111/dom.12954] [PMID: 28345814]
[86]
Fadini GP, Bonora BM, Zatti G, et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol 2017; 16(1): 42.
[http://dx.doi.org/10.1186/s12933-017-0529-3] [PMID: 28376855]
[87]
González-Ortiz M, Méndez-Del Villar M, Martínez-Abundis E, Ramírez-Rodríguez AM. Effect of dapagliflozin administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Minerva Endocrinol 2018; 43(3): 229-35.
[PMID: 28001016]
[88]
Rosenstock J, Chuck L, González-Ortiz M, et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naïve type 2 diabetes. Diabetes Care 2016; 39(3): 353-62.
[http://dx.doi.org/10.2337/dc15-1736] [PMID: 26786577]
[89]
Henry RR, Thakkar P, Tong C, Polidori D, Alba M. Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care 2015; 38(12): 2258-65.
[http://dx.doi.org/10.2337/dc15-1730] [PMID: 26486192]
[90]
Gavin JR III, Davies MJ, Davies M, Vijapurkar U, Alba M, Meininger G. The efficacy and safety of canagliflozin across racial groups in patients with type 2 diabetes mellitus. Curr Med Res Opin 2015; 31(9): 1693-702.
[http://dx.doi.org/10.1185/03007995.2015.1067192] [PMID: 26121561]
[91]
Kusunoki M, Natsume Y, Miyata T, Tsutsumi K, Oshida Y. Effects of concomitant administration of a dipeptidyl peptidase-4 inhibitor in japanese patients with type 2 diabetes showing relatively good glycemic control under treatment with a sodium glucose co-transporter 2 inhibitor. Drug Res (Stuttg) 2018; 68(12): 704-9.
[http://dx.doi.org/10.1055/a-0585-0145] [PMID: 29966149]
[92]
Harashima SI, Inagaki N, Kondo K, et al. Efficacy and safety of canagliflozin as add-on therapy to a glucagon-like peptide-1 receptor agonist in Japanese patients with type 2 diabetes mellitus: A 52-week, open-label, phase IV study. Diabetes Obes Metab 2018; 20(7): 1770-5.
[http://dx.doi.org/10.1111/dom.13267] [PMID: 29473709]
[93]
Polidori D, Iijima H, Goda M, Maruyama N, Inagaki N, Crawford PA. Intra- and inter-subject variability for increases in serum ketone bodies in patients with type 2 diabetes treated with the sodium glucose co-transporter 2 inhibitor canagliflozin. Diabetes Obes Metab 2018; 20(5): 1321-6.
[http://dx.doi.org/10.1111/dom.13224] [PMID: 29341404]
[94]
Hollander P, Bays HE, Rosenstock J, et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care 2017; 40(5): 632-9.
[http://dx.doi.org/10.2337/dc16-2427] [PMID: 28289041]
[95]
Bays HE, Weinstein R, Law G, Canovatchel W. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring) 2014; 22(4): 1042-9.
[http://dx.doi.org/10.1002/oby.20663] [PMID: 24227660]
[96]
Pfeifer M, Townsend RR, Davies MJ, Vijapurkar U, Ren J. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol 2017; 16(1): 29.
[http://dx.doi.org/10.1186/s12933-017-0511-0] [PMID: 28241822]
[97]
Neal B, Perkovic V, Matthews DR, et al. Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): A randomized, placebo-controlled trial. Diabetes Obes Metab 2017; 19(3): 387-93.
[http://dx.doi.org/10.1111/dom.12829] [PMID: 28120497]
[98]
Peters AL, Henry RR, Thakkar P, Tong C, Alba M. Diabetic ketoacidosis with canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in patients with type 1 diabetes. Diabetes Care 2016; 39(4): 532-8.
[http://dx.doi.org/10.2337/dc15-1995] [PMID: 26989182]
[99]
Osonoi T, Gouda M, Kubo M, Arakawa K, Hashimoto T, Abe M. Effect of canagliflozin on urinary albumin excretion in japanese patients with type 2 diabetes mellitus and microalbuminuria: a pilot study. Diabetes Technol Ther 2018; 20(10): 681-8.
[http://dx.doi.org/10.1089/dia.2018.0169] [PMID: 30096243]
[100]
Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism 2018; 85: 32-7.
[http://dx.doi.org/10.1016/j.metabol.2018.02.002] [PMID: 29452178]
[101]
Takebayashi K, Hara K, Terasawa T, et al. Effect of canagliflozin on circulating active GLP-1 levels in patients with type 2 diabetes: a randomized trial. Endocr J 2017; 64(9): 923-31.
[http://dx.doi.org/10.1507/endocrj.EJ17-0065] [PMID: 28824041]
[102]
Romera I, Gomis R, Crowe S, et al. Empagliflozin in combination with oral agents in young and overweight/obese Type 2 diabetes mellitus patients: A pooled analysis of three randomized trials. J Diabetes Complications 2016; 30(8): 1571-6.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.07.016] [PMID: 27499456]
[103]
Hadjadj S, Rosenstock J, Meinicke T, Woerle HJ, Broedl UC. Initial combination of empagliflozin and metformin in patients with type 2 diabetes. Diabetes Care 2016; 39(10): 1718-28.
[http://dx.doi.org/10.2337/dc16-0522] [PMID: 27493136]
[104]
Kalgutkar AS, Tugnait M, Zhu T, et al. Preclinical species and human disposition of PF-04971729, a selective inhibitor of the sodium-dependent glucose cotransporter 2 and clinical candidate for the treatment of type 2 diabetes mellitus. Drug Metab Dispos 2011; 39(9): 1609-19.
[http://dx.doi.org/10.1124/dmd.111.040675] [PMID: 21690265]
[105]
Miao Z, Nucci G, Amin N, et al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab Dispos 2013; 41(2): 445-56.
[http://dx.doi.org/10.1124/dmd.112.049551] [PMID: 23169609]
[106]
Kuchay MS, Krishan S, Mishra SK, et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (e-lift trial). Diabetes Care 2018; 41(8): 1801-8.
[http://dx.doi.org/10.2337/dc18-0165] [PMID: 29895557]
[107]
Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia 2018; 61(10): 2155-63.
[http://dx.doi.org/10.1007/s00125-018-4702-3] [PMID: 30066148]
[108]
Levine MJ. Empagliflozin for Type 2 Diabetes Mellitus: An Overview of Phase 3 Clinical Trials. Curr Diabetes Rev 2017; 13(4): 405-23.
[http://dx.doi.org/10.2174/1573399812666160613113556] [PMID: 27296042]
[109]
Cinti F, Moffa S, Impronta F, et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther 2017; 11: 2905-19.
[http://dx.doi.org/10.2147/DDDT.S114932] [PMID: 29042751]
[110]
Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017; 24(1): 73-9.
[PMID: 27898586]
[111]
Khouri C, Cracowski JL, Roustit M. SGLT-2 inhibitors and the risk of lower-limb amputation: Is this a class effect? Diabetes Obes Metab 2018; 20(6): 1531-4.
[http://dx.doi.org/10.1111/dom.13255] [PMID: 29430814]
[112]
Park K. Identification of YH-GKA, a novel benzamide glucokinase activator as therapeutic candidate for type 2 diabetes mellitus. Arch Pharm Res 2012; 35(12): 2029-33.
[http://dx.doi.org/10.1007/s12272-012-1201-9] [PMID: 23263798]
[113]
Matschinsky FM. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 1996; 45(2): 223-41.
[http://dx.doi.org/10.2337/diab.45.2.223] [PMID: 8549869]
[114]
Matschinsky FM, Glaser B, Magnuson MA. Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 1998; 47(3): 307-15.
[http://dx.doi.org/10.2337/diabetes.47.3.307] [PMID: 9519733]
[115]
Grimsby J, Sarabu R, Corbett WL, et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science 2003; 301(5631): 370-3.
[http://dx.doi.org/10.1126/science.1084073] [PMID: 12869762]
[116]
Bertram LS, Black D, Briner PH, et al. SAR, pharmacokinetics, safety, and efficacy of glucokinase activating 2-(4-sulfonylphenyl)-N-thiazol-2-ylacetamides: discovery of PSN-GK1. J Med Chem 2008; 51(14): 4340-5.
[http://dx.doi.org/10.1021/jm8003202] [PMID: 18588279]
[117]
Iino T, Hashimoto N, Hasegawa T, Chiba M, Eiki J, Nishimura T. Metabolic activation of N-thiazol-2-yl benzamide as glucokinase activators: Impacts of glutathione trapping on covalent binding. Bioorg Med Chem Lett 2010; 20(5): 1619-22.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.041] [PMID: 20138764]
[118]
Fyfe MC, White JR, Taylor A, et al. Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions. Diabetologia 2007; 50(6): 1277-87.
[http://dx.doi.org/10.1007/s00125-007-0646-8] [PMID: 17415548]
[119]
Park K, Lee BM, Kim YH, et al. Discovery of a novel phenylethyl benzamide glucokinase activator for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett 2013; 23(2): 537-42.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.018] [PMID: 23218712]
[120]
Eiki J, Nagata Y, Futamura M, et al. Pharmacokinetic and pharmacodynamic properties of the glucokinase activator MK-0941 in rodent models of type 2 diabetes and healthy dogs. Mol Pharmacol 2011; 80(6): 1156-65.
[http://dx.doi.org/10.1124/mol.111.074401] [PMID: 21937665]
[121]
Xu J, Lin S, Myers RW, et al. Discovery of orally active hepatoselective glucokinase activators for treatment of Type II Diabetes Mellitus. Bioorg Med Chem Lett 2017; 27(9): 2063-8.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.088] [PMID: 28284809]
[122]
Xu J, Lin S, Myers RW, et al. Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorg Med Chem Lett 2017; 27(9): 2069-73.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.085] [PMID: 28284804]
[123]
Dransfield PJ, Pattaropong V, Lai S, et al. Novel series of potent glucokinase activators leading to the discovery of AM-2394. ACS Med Chem Lett 2016; 7(7): 714-8.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00140] [PMID: 27437083]
[124]
Zhi J, Zhai S, Boldrin M. Dose-dependent effect of piragliatin, a glucokinase activator, on the qt interval following short-term multiple doses in patients with type 2 diabetes mellitus. Clin Pharmacol Drug Dev 2017; 6(3): 258-65.
[http://dx.doi.org/10.1002/cpdd.289] [PMID: 27364955]
[125]
Wang P, Liu H, Chen L, Duan Y, Chen Q, Xi S. Effects of a novel glucokinase activator, hms5552, on glucose metabolism in a rat model of type 2 diabetes mellitus. J Diabetes Res 2017.20175812607
[http://dx.doi.org/10.1155/2017/5812607] [PMID: 28191470]
[126]
Tsumura Y, Tsushima Y, Tamura A, et al. TMG-123, a novel glucokinase activator, exerts durable effects on hyperglycemia without increasing triglyceride in diabetic animal models. PLoS One 2017; 12(2)e0172252
[http://dx.doi.org/10.1371/journal.pone.0172252] [PMID: 28207836]
[127]
Filipski KJ, Pfefferkorn JA. A patent review of glucokinase activators and disruptors of the glucokinase--glucokinase regulatory protein interaction: 2011-2014. Expert Opin Ther Pat 2014; 24(8): 875-91.
[http://dx.doi.org/10.1517/13543776.2014.918957] [PMID: 24821087]
[128]
Terauchi Y, Sakura H, Yasuda K, et al. Pancreatic beta-cell-specific targeted disruption of glucokinase gene. Diabetes mellitus due to defective insulin secretion to glucose. J Biol Chem 1995; 270(51): 30253-6.
[http://dx.doi.org/10.1074/jbc.270.51.30253] [PMID: 8530440]
[129]
Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 1995; 83(1): 69-78.
[http://dx.doi.org/10.1016/0092-8674(95)90235-X] [PMID: 7553875]
[130]
Postic C, Shiota M, Niswender KD, et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999; 274(1): 305-15.
[http://dx.doi.org/10.1074/jbc.274.1.305] [PMID: 9867845]
[131]
Velho G, Blanché H, Vaxillaire M, et al. Identification of 14 new glucokinase mutations and description of the clinical profile of 42 MODY-2 families. Diabetologia 1997; 40(2): 217-24.
[http://dx.doi.org/10.1007/s001250050666] [PMID: 9049484]
[132]
Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA 2014; 311(3): 279-86.
[http://dx.doi.org/10.1001/jama.2013.283980] [PMID: 24430320]
[133]
Byrne MM, Sturis J, Clément K, et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest 1994; 93(3): 1120-30.
[http://dx.doi.org/10.1172/JCI117064] [PMID: 8132752]
[134]
Hussain K. Mutations in pancreatic ß-cell Glucokinase as a cause of hyperinsulinaemic hypoglycaemia and neonatal diabetes mellitus. Rev Endocr Metab Disord 2010; 11(3): 179-83.
[http://dx.doi.org/10.1007/s11154-010-9147-z] [PMID: 20878480]
[135]
Efanov AM, Barrett DG, Brenner MB, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology 2005; 146(9): 3696-701.
[http://dx.doi.org/10.1210/en.2005-0377] [PMID: 15919746]
[136]
Coope GJ, Atkinson AM, Allott C, et al. Predictive blood glucose lowering efficacy by Glucokinase activators in high fat fed female Zucker rats. Br J Pharmacol 2006; 149(3): 328-35.
[http://dx.doi.org/10.1038/sj.bjp.0706848] [PMID: 16921397]
[137]
Yellapu NK, Kandlapalli K, Kandimalla R, Adi PJ. Conformational transition pathway of R308K mutant glucokinase in the presence of the glucokinase activator YNKGKA4. FEBS Open Bio 2018; 8(8): 1202-8.
[http://dx.doi.org/10.1002/2211-5463.12255] [PMID: 30087826]
[138]
Zhu XX, Zhu DL, Li XY, et al. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic β-cell function in patients with type 2 diabetes: A 28-day treatment study using biomarker-guided patient selection. Diabetes Obes Metab 2018; 20(9): 2113-20.
[http://dx.doi.org/10.1111/dom.13338] [PMID: 29707866]
[139]
Lei L, Liu S, Li Y, et al. The potential role of glucokinase activator SHP289-04 in anti-diabetes and hepatic protection. Eur J Pharmacol 2018; 826: 17-23.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.036] [PMID: 29477658]
[140]
Wang Z, Shi X, Zhang H, et al. Discovery of cycloalkyl-fused N-thiazol-2-yl-benzamides as tissue non-specific glucokinase activators: Design, synthesis, and biological evaluation. Eur J Med Chem 2017; 139: 128-52.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.051] [PMID: 28800453]
[141]
Cheruvallath ZS, Gwaltney SL II, Sabat M, et al. Discovery of potent and orally active 1,4-disubstituted indazoles as novel allosteric glucokinase activators. Bioorg Med Chem Lett 2017; 27(12): 2678-82.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.041] [PMID: 28512030]
[142]
Min Q, Cai X, Sun W, et al. Identification of mangiferin as a potential Glucokinase activator by structure-based virtual ligand screening. Sci Rep 2017; 7: 44681.
[http://dx.doi.org/10.1038/srep44681] [PMID: 28317897]
[143]
Denney WS, Denham DS, Riggs MR, Amin NB. Glycemic Effect and Safety of a Systemic, Partial Glucokinase Activator, PF-04937319, in patients with type 2 diabetes mellitus inadequately controlled on metformin-a randomized, crossover, active-controlled study. Clin Pharmacol Drug Dev 2016; 5(6): 517-27.
[http://dx.doi.org/10.1002/cpdd.261] [PMID: 27870481]
[144]
Katz L, Manamley N, Snyder WJ, et al. AMG 151 (ARRY-403), a novel glucokinase activator, decreases fasting and postprandial glycaemia in patients with type 2 diabetes. Diabetes Obes Metab 2016; 18(2): 191-5.
[http://dx.doi.org/10.1111/dom.12586] [PMID: 26434934]
[145]
Jahan M, Johnström P, Nag S, et al. Synthesis and biological evaluation of [11C]AZ12504948; a novel tracer for imaging of glucokinase in pancreas and liver. Nucl Med Biol 2015; 42(4): 387-94.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.12.003] [PMID: 25633247]
[146]
Agius L. Lessons from glucokinase activators: the problem of declining efficacy. Expert Opin Ther Pat 2014; 24(11): 1155-9.
[http://dx.doi.org/10.1517/13543776.2014.965680] [PMID: 25266490]
[147]
Sonoda J, Chen MZ, Baruch A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm Mol Biol Clin Investig 2017; 30(2): /j/hmbci.2017.30.issue-2/hmbci- 2017-0002/hmbci-2017-0002.xml.
[http://dx.doi.org/10.1515/hmbci-2017-0002] [PMID: 28525362]
[148]
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 2015; 4(3): 215-66.
[http://dx.doi.org/10.1002/wdev.176] [PMID: 25772309]
[149]
Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 2015; 26(1): 22-9.
[http://dx.doi.org/10.1016/j.tem.2014.10.002] [PMID: 25476453]
[150]
Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18(3): 333-40.
[http://dx.doi.org/10.1016/j.cmet.2013.08.005] [PMID: 24011069]
[151]
Kharitonenkov A, Beals JM, Micanovic R, et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One 2013; 8(3)e58575
[http://dx.doi.org/10.1371/journal.pone.0058575] [PMID: 23536797]
[152]
Adams AC, Halstead CA, Hansen BC, et al. LY2405319, an engineered fgf21 variant, improves the metabolic status of diabetic monkeys. PLoS One 2013; 8(6)e65763
[http://dx.doi.org/10.1371/journal.pone.0065763] [PMID: 23823755]
[153]
Kim JH, Bae KH, Choi YK, et al. Fibroblast growth factor 21 analogue LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function. Diabetes Obes Metab 2015; 17(2): 161-9.
[http://dx.doi.org/10.1111/dom.12408] [PMID: 25359298]
[154]
Lee JH, Kang YE, Chang JY, et al. An engineered FGF21 variant, LY2405319, can prevent non-alcoholic steatohepatitis by enhancing hepatic mitochondrial function. Am J Transl Res 2016; 8(11): 4750-63.
[PMID: 27904677]
[155]
Hecht R, Li YS, Sun J, et al. Rationale-based engineering of a potent long-acting fgf21 analog for the treatment of type 2 diabetes. PLoS One 2012; 7(11)e49345
[http://dx.doi.org/10.1371/journal.pone.0049345] [PMID: 23209571]
[156]
Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17(1): 157.
[http://dx.doi.org/10.1186/s12933-018-0800-2] [PMID: 30545359]
[157]
Moore B. On the treatment of Diabetus mellitus by acid extract of duodenal mucous membrane. Biochem J 1906; 1(1): 28-38.
[http://dx.doi.org/10.1042/bj0010028] [PMID: 16742013]
[158]
Balsano F, Pitucco G, Musca A, Dinoto V. New interpretation of oral glucose tolerance. Lancet 1964; 2(7364): 865.
[http://dx.doi.org/10.1016/S0140-6736(64)90724-X] [PMID: 14197177]
[159]
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 2016; 230(3): R95-R113.
[http://dx.doi.org/10.1530/JOE-16-0056] [PMID: 27496374]
[160]
Mortensen K, Christensen LL, Holst JJ, Orskov C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 2003; 114(2-3): 189-96.
[http://dx.doi.org/10.1016/S0167-0115(03)00125-3] [PMID: 12832109]
[161]
Holst JJ, Orskov C. The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes 2004; 53(Suppl. 3): S197-204.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S197] [PMID: 15561911]
[162]
Guglielmi V, Sbraccia P. GLP-1 receptor independent pathways: emerging beneficial effects of GLP-1 breakdown products. Eat Weight Disord 2017; 22(2): 231-40.
[http://dx.doi.org/10.1007/s40519-016-0352-y] [PMID: 28040864]
[163]
Thornberry NA, Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab 2009; 23(4): 479-86.
[http://dx.doi.org/10.1016/j.beem.2009.03.004] [PMID: 19748065]
[164]
Wang Q, Long M, Qu H, et al. DPP-4 inhibitors as treatments for type 1 diabetes mellitus: a systematic review and meta-analysis. J Diabetes Res 2018.20185308582
[http://dx.doi.org/10.1155/2018/5308582] [PMID: 29507862]
[165]
Lerche S, Soendergaard L, Rungby J, et al. No increased risk of hypoglycaemic episodes during 48 h of subcutaneous glucagon-like-peptide-1 administration in fasting healthy subjects. Clin Endocrinol (Oxf) 2009; 71(4): 500-6.
[http://dx.doi.org/10.1111/j.1365-2265.2008.03510.x] [PMID: 19094067]
[166]
Tran KL, Park YI, Pandya S, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes. Am Health Drug Benefits 2017; 10(4): 178-88.
[PMID: 28794822]
[167]
Executive summary: Standards of medical care in diabetes--2013. Diabetes Care 2013; 36(Suppl. 1): S4-S10.
[http://dx.doi.org/10.2337/dc13-S004] [PMID: 23264424]
[168]
Hjerpsted JB, Flint A, Brooks A, Axelsen MB, Kvist T, Blundell J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes Metab 2018; 20(3): 610-9.
[http://dx.doi.org/10.1111/dom.13120] [PMID: 28941314]
[169]
Nauck MA, Petrie JR, Sesti G, et al. A phase 2, randomized, dose-finding study of the novel once-weekly human glp-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care 2016; 39(2): 231-41.
[PMID: 26358288]
[170]
Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2012; 8(12): 728-42.
[http://dx.doi.org/10.1038/nrendo.2012.140] [PMID: 22945360]
[171]
Saraiva FK, Sposito AC. Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. Cardiovasc Diabetol 2014; 13: 142.
[http://dx.doi.org/10.1186/s12933-014-0142-7] [PMID: 25338737]
[172]
Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ. GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys 2008; 478(2): 136-42.
[http://dx.doi.org/10.1016/j.abb.2008.08.001] [PMID: 18708025]
[173]
Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO. Vasorelaxant effect of glucagon-like peptide-(7-36)amide and amylin on the pulmonary circulation of the rat. Regul Pept 2001; 102(2-3): 81-6.
[http://dx.doi.org/10.1016/S0167-0115(01)00300-7] [PMID: 11730979]
[174]
Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(-/-) mouse model. Diab Vasc Dis Res 2013; 10(4): 353-60.
[http://dx.doi.org/10.1177/1479164113481817] [PMID: 23673376]
[175]
Rizzo M, Rizvi AA, Patti AM, et al. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: an 18-month prospective study. Cardiovasc Diabetol 2016; 15(1): 162.
[http://dx.doi.org/10.1186/s12933-016-0480-8] [PMID: 27912784]
[176]
Kumarathurai P, Anholm C, Larsen BS, et al. Effects of liraglutide on heart rate and heart rate variability: A randomized, double-blind, placebo-controlled crossover study. Diabetes Care 2017; 40(1): 117-24.
[http://dx.doi.org/10.2337/dc16-1580] [PMID: 27797930]
[177]
Kumarathurai P, Anholm C, Nielsen OW, et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide on systolic function in patients with coronary artery disease and type 2 diabetes: a randomized double-blind placebo-controlled crossover study. Cardiovasc Diabetol 2016; 15(1): 105.
[http://dx.doi.org/10.1186/s12933-016-0425-2] [PMID: 27455835]
[178]
Oyama J, Node K. Incretin therapy and heart failure. Circ J 2014; 78(4): 819-24.
[http://dx.doi.org/10.1253/circj.CJ-13-1561] [PMID: 24614493]
[179]
Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A New Treatment Strategy for Parkinson’s Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1 Receptor Pathway. Cell Transplant 2017; 26(9): 1560-71.
[http://dx.doi.org/10.1177/0963689717721234] [PMID: 29113464]
[180]
Li Y, Perry T, Kindy MS, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci USA 2009; 106(4): 1285-90.
[http://dx.doi.org/10.1073/pnas.0806720106] [PMID: 19164583]
[181]
Chen F, Wang W, Ding H, Yang Q, Dong Q, Cui M. The glucagon-like peptide-1 receptor agonist exendin-4 ameliorates warfarin-associated hemorrhagic transformation after cerebral ischemia. J Neuroinflammation 2016; 13(1): 204.
[http://dx.doi.org/10.1186/s12974-016-0661-0] [PMID: 27566245]
[182]
Monami M, Nreu B, Scatena A, et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab 2017; 19(9): 1233-41.
[http://dx.doi.org/10.1111/dom.12926] [PMID: 28244632]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy