Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Molecules and Metabolites from Natural Products as Inhibitors of Biofilm in Candida spp. pathogens

Author(s): Rajeev K. Singla and Ashok K. Dubey*

Volume 19, Issue 28, 2019

Page: [2567 - 2578] Pages: 12

DOI: 10.2174/1568026619666191025154834

conference banner
Abstract

Background: Biofilm is a critical virulence factor associated with the strains of Candida spp. pathogens as it confers significant resistance to the pathogen against antifungal drugs.

Methods: A systematic review of the literature was undertaken by focusing on natural products, which have been reported to inhibit biofilms produced by Candida spp. The databases explored were from PubMed and Google Scholar. The abstracts and full text of the manuscripts from the literature were analyzed and included if found significant.

Results: Medicinal plants from the order Lamiales, Apiales, Asterales, Myrtales, Sapindales, Acorales, Poales and Laurales were reported to inhibit the biofilms formed by Candida spp. From the microbiological sources, lactobacilli, Streptomyces chrestomyceticus and Streptococcus thermophilus B had shown the strong biofilm inhibition potential. Further, the diverse nature of the compounds from classes like terpenoids, phenylpropanoid, alkaloids, flavonoids, polyphenol, naphthoquinone and saponin was found to be significant in inhibiting the biofilm of Candida spp.

Conclusion: Natural products from both plant and microbial origins have proven themselves as a goldmine for isolating the potential biofilm inhibitors with a specific or multi-locus mechanism of action. Structural and functional characterization of the bioactive molecules from active extracts should be the next line of approach along with the thorough exploration of the mechanism of action for the already identified bioactive molecules.

Keywords: Biofilm inhibitors, Candida-biofilm, Virulence factor, Anti-Candida metabolites, Natural products, Antifungal drugs.

Graphical Abstract
[1]
Srivastava, V.; Singla, R.K.; Dubey, A.K. Emerging virulence, drug resistance and future anti-fungal drugs for Candida pathogens. Curr. Top. Med. Chem., 2018, 18(9), 759-778.
[http://dx.doi.org/10.2174/1568026618666180528121707] [PMID: 29807516]
[2]
Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence, 2013, 4(2), 119-128.
[http://dx.doi.org/10.4161/viru.22913] [PMID: 23302789]
[3]
Tsaia, P-W.; Chena, Y-T.; Hsu, P-C.; Lan, C-Y. Study of Candida albicans and its interactions with the host: a mini review. Biomedicine (Taipei), 2013, 3, 51-64.
[http://dx.doi.org/10.1016/j.biomed.2012.12.004]
[4]
Shibata, N.; Kobayashi, H.; Suzuki, S. Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2012, 88(6), 250-265.
[http://dx.doi.org/10.2183/pjab.88.250] [PMID: 22728440]
[5]
Moran, G.P.; Coleman, D.C.; Sullivan, D.J. Candida albicans versus Candida dubliniensis: Why is C. albicans more pathogenic? Int. J. Microbiol., 2012, 2012205921
[http://dx.doi.org/10.1155/2012/205921] [PMID: 21904553]
[6]
Aboualigalehdari, E.; Sadeghifard, N.; Taherikalani, M.; Zargoush, Z.; Tahmasebi, Z.; Badakhsh, B.; Rostamzad, A.; Ghafourian, S.; Pakzad, I. Anti-biofilm Properties of Peganum harmala against Candida albicans. Osong Public Health Res. Perspect., 2016, 7(2), 116-118.
[http://dx.doi.org/10.1016/j.phrp.2015.12.010] [PMID: 27169010]
[7]
Sobel, J.D.; Faro, S.; Force, R.W.; Foxman, B.; Ledger, W.J.; Nyirjesy, P.R.; Reed, B.D.; Summers, P.R. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. Am. J. Obstet. Gynecol., 1998, 178, 203e11.
[http://dx.doi.org/10.1016/S0002-9378(98)80001-X]
[8]
Freires, I. A.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; Alencar, S.M.; Figueira, G.M.; de Oliveira Rodrigues, J.A.; Duarte, M.C.T.; Rosalen, P.L. Coriandrum sativum L. (Coriander) essential oil: antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS One, 2014, 9(6)e99086
[http://dx.doi.org/10.1371/journal.pone.0099086] [PMID: 24901768]
[9]
Colombo, A.L.; Nucci, M.; Park, B.J.; Nouér, S.A.; Arthington-Skaggs, B.; da Matta, D.A.; Warnock, D.; Morgan, J. Brazilian Network Candidemia Study. Epidemiology of candidemia in Brazil: A nationwide sentinel surveillance of candidemia in eleven medical centers. J. Clin. Microbiol., 2006, 44(8), 2816-2823.
[http://dx.doi.org/10.1128/JCM.00773-06] [PMID: 16891497]
[10]
Pfaller, M.; Neofytos, D.; Diekema, D.; Azie, N.; Meier-Kriesche, H.U.; Quan, S.P.; Horn, D. Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004-2008. Diagn. Microbiol. Infect. Dis., 2012, 74(4), 323-331.
[http://dx.doi.org/10.1016/j.diagmicrobio.2012.10.003] [PMID: 23102556]
[11]
Nett, J.E. Future directions for anti-biofilm therapeutics targeting Candida. Expert Rev. Anti Infect. Ther., 2014, 12(3), 375-382.
[http://dx.doi.org/10.1586/14787210.2014.885838] [PMID: 24506174]
[12]
Khan, S.; Alam, F.; Azam, A.; Khan, A.U. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nanomedicine, 2012, 7, 3245-3257.
[http://dx.doi.org/10.2147/IJN.S31219] [PMID: 22802686]
[13]
Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol., 2015, 69, 71-92.
[http://dx.doi.org/10.1146/annurev-micro-091014-104330] [PMID: 26488273]
[14]
Zarnowski, R.; Westler, W.M.; Lacmbouh, G.A.; Marita, J.M.; Bothe, J.R.; Bernhardt, J.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Sanchez, H.; Hatfield, R.D.; Ntambi, J.M.; Nett, J.E.; Mitchell, A.P.; Andes, D.R. Novel entries in a fungal biofilm matrix encyclopedia. MBio, 2014, 5(4), e01333-e14.
[http://dx.doi.org/10.1128/mBio.01333-14] [PMID: 25096878]
[15]
Cavalheiro, M.; Teixeira, M.C. Candida biofilms: threats, challenges, and promising strategies. Front. Med. (Lausanne), 2018, 5, 28.
[http://dx.doi.org/10.3389/fmed.2018.00028] [PMID: 29487851]
[16]
Becherelli, M.; Tao, J.; Ryder, N.S. Involvement of heat shock proteins in Candida albicans biofilm formation. J. Mol. Microbiol. Biotechnol., 2013, 23(6), 396-400.
[http://dx.doi.org/10.1159/000351619] [PMID: 23942459]
[17]
Gulati, M.; Nobile, C.J. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect., 2016, 18(5), 310-321.
[http://dx.doi.org/10.1016/j.micinf.2016.01.002] [PMID: 26806384]
[18]
Cateau, E.; Berjeaud, J-M.; Rodier, M-H.; Imbert, C. Fungal biofilm inhibition by a component naturally produced by Candida albicans yeasts growing as a biofilm. Int. J. Antimicrob. Agents, 2008, 31(2), 166-170.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.10.004] [PMID: 18160264]
[19]
Bruzual, I.; Riggle, P.; Hadley, S.; Kumamoto, C.A. Biofilm formation by fluconazole-resistant Candida albicans strains is inhibited by fluconazole. J. Antimicrob. Chemother., 2007, 59(3), 441-450.
[http://dx.doi.org/10.1093/jac/dkl521] [PMID: 17261564]
[20]
Cragg, G.M.; Newman, D.J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[21]
Vicente, M.F.; Basilio, A.; Cabello, A.; Peláez, F. Microbial natural products as a source of antifungals. Clin. Microbiol. Infect., 2003, 9(1), 15-32.
[http://dx.doi.org/10.1046/j.1469-0691.2003.00489.x] [PMID: 12691539]
[22]
Bachmann, S.P.; VandeWalle, K.; Ramage, G.; Patterson, T.F.; Wickes, B.L.; Graybill, J.R.; López-Ribot, J.L. In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob. Agents Chemother., 2002, 46(11), 3591-3596.
[http://dx.doi.org/10.1128/AAC.46.11.3591-3596.2002] [PMID: 12384370]
[23]
Deresinski, S.C.; Stevens, D.A. Caspofungin. Clin. Infect. Dis., 2003, 36(11), 1445-1457.
[http://dx.doi.org/10.1086/375080] [PMID: 12766841]
[24]
Singla, R.K.; Dubey, A.K. Phytochemical profiling, GC-MS analysis and α-amylase inhibitory potential of ethanolic extract of Cocos nucifera Linn. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 419-442.
[http://dx.doi.org/10.2174/1871530319666181128100206] [PMID: 30484412]
[25]
Singla, R.K.; Scotti, L.; Dubey, A.K. In silico studies revealed multiple neurological targets for the antidepressant molecule ursolic acid. Curr. Neuropharmacol., 2017, 15(8), 1100-1106.
[http://dx.doi.org/10.2174/1570159X14666161229115508] [PMID: 28034283]
[26]
Singla, R.K.; Dubey, H.D.; Dubey, A.K. Therapeutic spectrum of bacterial metabolites. Indo Global J. Pharm. Sci., 2014, 4, 52-64.
[27]
Subha, T.S.; Gnanamani, A. Candida biofilm perfusion using active fractions of Acorus calamus. J. Anim. Plant Sci., 2009, 4, 363-371.
[28]
Chevalier, M.; Medioni, E.; Prêcheur, I. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. J. Med. Microbiol., 2012, 61(Pt 7), 1016-1022.
[http://dx.doi.org/10.1099/jmm.0.041699-0] [PMID: 22422572]
[29]
Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J.A.; Rodrigues, A.G. The anti-Candida activity of Thymbra capitata essential oil: effect upon pre-formed biofilm. J. Ethnopharmacol., 2012, 140(2), 379-383.
[http://dx.doi.org/10.1016/j.jep.2012.01.029] [PMID: 22310557]
[30]
Pires, R.H.; Montanari, L.B.; Martins, C.H.; Zaia, J.E.; Almeida, A.M.; Matsumoto, M.T.; Mendes-Giannini, M.J. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia, 2011, 172(6), 453-464.
[http://dx.doi.org/10.1007/s11046-011-9448-0] [PMID: 21761153]
[31]
Khan, M.S.A.; Ahmad, I. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol., 2012, 140(2), 416-423.
[http://dx.doi.org/10.1016/j.jep.2012.01.045] [PMID: 22326355]
[32]
Bouman, S.; Lund, D.B.; Driessen, F.M.; Schmidt, D.G. Growth of thermoresistant streptococci and deposition of milk constituents on plates of heat exchangers during long operating times. J. Food Prot., 1982, 45(9), 806-812.
[http://dx.doi.org/10.4315/0362-028X-45.9.806] [PMID: 30866295]
[33]
Busscher, H.J.; van Hoogmoed, C.G.; Geertsema-Doornbusch, G.I.; van der Kuijl-Booij, M.; van der Mei, H.C. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Appl. Environ. Microbiol., 1997, 63(10), 3810-3817.
[PMID: 9327543]
[34]
Matsubara, V.H.; Wang, Y.; Bandara, H.M.; Mayer, M.P.; Samaranayake, L.P. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol., 2016, 100(14), 6415-6426.
[http://dx.doi.org/10.1007/s00253-016-7527-3] [PMID: 27087525]
[35]
Srivastava, V.; Dubey, A.K. Anti-biofilm activity of the metabolites of Streptomyces chrestomyceticus strain ADP4 against Candida albicans. J. Biosci. Bioeng., 2016, 122(4), 434-440.
[http://dx.doi.org/10.1016/j.jbiosc.2016.03.013] [PMID: 27117484]
[36]
Srivastava, V.; Singla, R.K.; Dubey, A.K. Inhibition of biofilm and virulence factors of Candida albicans by partially purified secondary metabolites of Streptomyces chrestomyceticus strain ADP4. Curr. Top. Med. Chem., 2018, 18(11), 925-945.
[http://dx.doi.org/10.2174/1568026618666180711154110] [PMID: 29992882]
[37]
Ansari, M.J.; Al-Ghamdi, A.; Usmani, S.; Al-Waili, N.S.; Sharma, D.; Nuru, A.; Al-Attal, Y. Effect of jujube honey on Candida albicans growth and biofilm formation. Arch. Med. Res., 2013, 44(5), 352-360.
[http://dx.doi.org/10.1016/j.arcmed.2013.06.003] [PMID: 23867789]
[38]
Molan, P. Re-introducing honey in the management of wounds and ulcers—theory and practice. Ostomy Wound Manage., 2002, 48(11), 28-40.
[39]
Cushnie, T.; Lamb, A. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002]
[40]
Kwakman, P.; te-Velde, A.; de Boer, L.; Speijer, D.; Vandenbroucke-Grauls, C.M.; Zaat, S.A. How honey kills bacteria. FASEB J., 2010, 24, 2576-2582.
[http://dx.doi.org/10.1096/fj.09-150789]
[41]
Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem., 2009, 112, 77-83.
[http://dx.doi.org/10.1016/j.foodchem.2008.05.060]
[42]
Galehassadi, M.; Rezaii, E.; Najavand, S.; Mahkam, M.; Mohammadzadeh, G.N. Isolation of carvacol from Origanum vulgare, synthesis of some organosilicon derivatives, and investigating of its antioxidant, antibacterial activities. Stand. Scient. Res. Essays, 2014, 2, 438-450.
[43]
Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evidence-Based Complementary Altern. Evid. Based Complement. Alternat. Med., 2012, 2012657026
[http://dx.doi.org/10.1155/2012/657026] [PMID: 22919415]
[44]
Ntamila, M.S.; Hassanali, A. Isolation of oil of clove and separation of eugenol and acetyl eugenol. An instructive experiment for beginning chemistry undergraduates. J. Chem. Educ., 1976, 53, 263.
[http://dx.doi.org/10.1021/ed053p263]
[45]
Yoo, C.B.; Han, K.T.; Cho, K.S.; Ha, J.; Park, H.J.; Nam, J.H.; Kil, U.H.; Lee, K.T. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett., 2005, 225(1), 41-52.
[http://dx.doi.org/10.1016/j.canlet.2004.11.018] [PMID: 15922856]
[46]
Faria, T.D.J.; Ferreira, R.S.; Yassumoto, L.; Souza, J.R.P.D.; Ishikawa, N.K.; Barbosa, A.D.M. Antifungal activity of essential oil isolated from Ocimum gratissimum L.(eugenol chemotype) against phytopathogenic fungi. Braz. Arch. Biol. Technol., 2006, 49, 867-871.
[http://dx.doi.org/10.1590/S1516-89132006000700002]
[47]
De Silvestro, I.; Drew, S.L.; Nichol, G.S.; Duarte, F.; Lawrence, A.L. Total synthesis of a dimeric thymol derivative isolated from Arnica sachalinensis. Angew. Chem. Int. Ed. Engl., 2017, 56(24), 6813-6817.
[http://dx.doi.org/10.1002/anie.201701481] [PMID: 28474807]
[48]
Agarwal, S.G.; Gupta, A.; Kapahi, B.K. Baleshwar; Thappa, R.K.; Suri, O.P. Chemical composition of rose water volatiles. J. Essent. Oil Res., 2005, 17, 265-267.
[http://dx.doi.org/10.1080/10412905.2005.9698897]
[49]
Eden, W.T.; Alighiri, D.; Cahyono, E.; Supardi, K.I.; Wijayati, N. Fractionation of Java citronella oil and citronellal purification by batch vacuum fractional distillation. IOP Conf. Ser. Mater. Sci. Eng., 2018, 349, p. 012067.
[http://dx.doi.org/10.1088/1757-899X/349/1/012067]
[50]
Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J-M.; Imbert, C. In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents, 2008, 31(6), 572-576.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.028] [PMID: 18440786]
[51]
He, M.; Du, M.; Fan, M.; Bian, Z. In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia, 2007, 163(3), 137-143.
[http://dx.doi.org/10.1007/s11046-007-0097-2] [PMID: 17356790]
[52]
Doke, S.K.; Raut, J.S.; Dhawale, S.; Karuppayil, S.M. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J. Gen. Appl. Microbiol., 2014, 60(5), 163-168.
[http://dx.doi.org/10.2323/jgam.60.163] [PMID: 25420420]
[53]
Jiménez, A.; Meckes, M.; Alvarez, V.; Torres, J.; Parra, R. Secondary metabolites from Chamaedora tepejilote (Palmae) are active against Mycobacterium tuberculosis. Phytother. Res., 2005, 19(4), 320-322.
[http://dx.doi.org/10.1002/ptr.1664] [PMID: 16041726]
[54]
Richards, J.B.; Hemming, F.W. Dolichols, ubiquinones, geranylgeraniol and farnesol as the major metabolites of mevalonate in Phytophthora cactorum. Biochem. J., 1972, 128(5), 1345-1352.
[http://dx.doi.org/10.1042/bj1281345] [PMID: 4643705]
[55]
Afsharypuor, S.; Asgary, S.; Lockwood, G.B. Volatile constituents of Achillea millefolium L. ssp. millefolium from Iran. Flavour Fragrance J., 1996, 11, 1099.
[http://dx.doi.org/10.1002/(SICI)1099-1026(199609)11:5<265:AID-FFJ592>3.0.CO;2-F]
[56]
Ramage, G.; Saville, S.P.; Wickes, B.L.; López-Ribot, J.L. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl. Environ. Microbiol., 2002, 68(11), 5459-5463.
[http://dx.doi.org/10.1128/AEM.68.11.5459-5463.2002] [PMID: 12406738]
[57]
Cao, Y-Y.; Cao, Y-B.; Xu, Z.; Ying, K.; Li, Y.; Xie, Y.; Zhu, Z-Y.; Chen, W-S.; Jiang, Y-Y. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob. Agents Chemother., 2005, 49(2), 584-589.
[http://dx.doi.org/10.1128/AAC.49.2.584-589.2005] [PMID: 15673737]
[58]
da Silva, A.R.; de Andrade Neto, J.B.; da Silva, C.R. Campos, Rde.S.; Costa Silva, R.A.; Freitas, D.D.; do Nascimento, F.B.S.A.; de Andrade, L.N.D.; Sampaio, L.S.; Grangeiro, T.B.; Magalhães, H.I.F.; Cavalcanti, B.C.; de Moraes, M.O.; Nobre Júnior, H.V. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob. Agents Chemother., 2016, 60(6), 3551-3557.
[http://dx.doi.org/10.1128/AAC.01846-15] [PMID: 27021328]
[59]
Evensen, N.A.; Braun, P.C. The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can. J. Microbiol., 2009, 55(9), 1033-1039.
[http://dx.doi.org/10.1139/W09-058] [PMID: 19898545]
[60]
Susanti, E. Ciptati, Ratnawati, R.; Aulanniam, Rudijanto, A. Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS. Asian Pac. J. Trop. Biomed., 2015, 5, 1046-1050.
[http://dx.doi.org/10.1016/j.apjtb.2015.09.013]
[61]
Epifano, F.; Genovese, S.; James Squires, E.; Gray, M.A. Nelumal A, the active principle from Ligularia nelumbifolia, is a novel farnesoid X receptor agonist. Bioorg. Med. Chem. Lett., 2012, 22(9), 3130-3135.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.057] [PMID: 22472691]
[62]
Messier, C.; Epifano, F.; Genovese, S.; Grenier, D. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine, 2011, 18(5), 380-383.
[http://dx.doi.org/10.1016/j.phymed.2011.01.013] [PMID: 21353508]
[63]
Wang, K.; Yan, J.; Dang, W.; Xie, J.; Yan, B.; Yan, W.; Sun, M.; Zhang, B.; Ma, M.; Zhao, Y.; Jia, F.; Zhu, R.; Chen, W.; Wang, R. Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: membrane integrity disruption and inhibition of biofilm formation. Peptides, 2014, 56, 22-29.
[http://dx.doi.org/10.1016/j.peptides.2014.03.005] [PMID: 24642357]
[64]
Souza, B.M.; Mendes, M.A.; Santos, L.D.; Marques, M.R.; César, L.M.; Almeida, R.N.; Pagnocca, F.C.; Konno, K.; Palma, M.S. Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides, 2005, 26(11), 2157-2164.
[http://dx.doi.org/10.1016/j.peptides.2005.04.026] [PMID: 16129513]
[65]
Tatsumi, K.; Yano, M.; Kaminade, K.; Sugiyama, A.; Sato, M.; Toyooka, K.; Aoyama, T.; Sato, F.; Yazaki, K. Characterization of shikonin derivative secretion in Lithospermum erythrorhizon hairy roots as a model of lipid-soluble metabolite secretion from plants. Front. Plant Sci., 2016, 7, 1066.
[http://dx.doi.org/10.3389/fpls.2016.01066] [PMID: 27507975]
[66]
Yan, Y.; Tan, F.; Miao, H.; Wang, H.; Cao, Y. Effect of shikonin against Candida albicans biofilms. Front. Microbiol., 2019, 10, 1085.
[http://dx.doi.org/10.3389/fmicb.2019.01085] [PMID: 31156594]
[67]
Li, H.B.; Chen, F. Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. J. Chromatogr. A, 2005, 1074(1-2), 107-110.
[http://dx.doi.org/10.1016/j.chroma.2005.03.088] [PMID: 15941045]
[68]
Yun, M-Y.; Won, E-Y.; Lee, J-H.; Jung, J-I.; Choi, H-J. Bioconversion from Scutellariabaicalensis (baicalin) feremted with Leatiporussulphureus into enriched-baicalein and anti-wrinkle effects. Pharmacogn. Mag., 2018, 14, 453-457.
[http://dx.doi.org/10.4103/pm.pm_32_18]
[69]
Tuan, P.A.; Kim, Y.S.; Kim, Y.; Thwe, A.A.; Li, X.; Park, C.H.; Lee, S.Y.; Park, S.U. Molecular characterization of flavonoid biosynthetic genes and accumulation of baicalin, baicalein, and wogonin in plant and hairy root of Scutellaria lateriflora. Saudi J. Biol. Sci., 2018, 25(8), 1639-1647.
[http://dx.doi.org/10.1016/j.sjbs.2016.08.011] [PMID: 30591781]
[70]
Subramaniam, S.; Raju, R.; Palanisamy, A.; Sivasubramanian, A. Development and extraction optimization of baicalein and pinostrobin from Scutellaria violacea through response surface methodology. Pharmacogn. Mag., 2015, 11(Suppl. 1), S127-S138.
[http://dx.doi.org/10.4103/0973-1296.157714] [PMID: 26109758]
[71]
Chen, L.J.; Games, D.E.; Jones, J. Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by high-speed counter-current chromatography. J. Chromatogr. A, 2003, 988(1), 95-105.
[http://dx.doi.org/10.1016/S0021-9673(02)01954-4] [PMID: 12647824]
[72]
Fujita, M.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Mizushima, T.; Tsuchiya, T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 2005, 49(4), 391-396.
[http://dx.doi.org/10.1111/j.1348-0421.2005.tb03732.x] [PMID: 15840965]
[73]
Cao, Y.; Dai, B.; Wang, Y.; Huang, S.; Xu, Y.; Cao, Y.; Gao, P.; Zhu, Z.; Jiang, Y. In vitro activity of baicalein against Candida albicans biofilms. Int. J. Antimicrob. Agents, 2008, 32(1), 73-77.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.026] [PMID: 18374543]
[74]
Coleman, J.J.; Okoli, I.; Tegos, G.P.; Holson, E.B.; Wagner, F.F.; Hamblin, M.R.; Mylonakis, E. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem. Biol., 2010, 5(3), 321-332.
[http://dx.doi.org/10.1021/cb900243b] [PMID: 20099897]
[75]
Li, Y.; Chang, W.; Zhang, M.; Ying, Z.; Lou, H. Natural product solasodine-3-O-β-D-glucopyranoside inhibits the virulence factors of Candida albicans. FEMS Yeast Res., 2015, 15(6)fov060
[http://dx.doi.org/10.1093/femsyr/fov060] [PMID: 26162798]

© 2024 Bentham Science Publishers | Privacy Policy