Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

An Overview on Pyranocoumarins: Synthesis and Biological Activities

Author(s): Evangelia-Eirini N. Vlachou and Konstantinos E. Litinas*

Volume 23, Issue 24, 2019

Page: [2679 - 2721] Pages: 43

DOI: 10.2174/1385272823666191025151236

Price: $65

conference banner
Abstract

Pyrano- and dipyranocoumarins are classes of naturally occurring organic compounds with very interesting biological activities. This review focuses on the synthetic strategies for the synthesis of pyranocoumarins and dipyranocoumarins and the biological properties of those compounds. The synthesis involves the formation of the pyran ring, at first, from a coumarin or the formation of pyranone moiety from an existing pyran. Pyranocoumarins and dipyranocoumarins present anti-HIV, anti-cancer, neuroprotective, antidiabetic, antibacterial, antifungal, anti-inflammatory activities. Especially khellactones and calanolides are usually potent and selective in anti-HIV activity. Decursin and decursinol derivatives are effective as anticancer, neuroprotective, antidiabetic, antibacterial, and antifungal agents.

Keywords: Pyranocoumarins, dipyranocoumarins, natural products, khellactones, calanolides, decursinol derivatives, anti-HIV activity, anti-cancer activity.

Graphical Abstract
[1]
Murray, D.H.; Mendez, J.; Brown, S.A. The Natural Coumarins: Occurrence. Chemistry and Biochemistry, 1982.
[http://dx.doi.org/10.1111/1365-3040.ep11611630]
[2]
O’Kennedy, R.; Thornes, R.D. Coumarins: Biology; Applications and Mode of Action, 1997.
[3]
Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S.L.; Lee, K.H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev., 2003, 23(3), 322-345.
[http://dx.doi.org/10.1002/med.10034] [PMID: 12647313]
[4]
Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[5]
Santana, L.; Uriarte, E.; Roleira, F.; Milhazes, N.; Borges, F. Furocoumarins in medicinal chemistry. Synthesis, natural occurrence and biological activity. Curr. Med. Chem., 2004, 11(24), 3239-3261.
[http://dx.doi.org/10.2174/0929867043363721] [PMID: 15579011]
[6]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693] [PMID: 15579072]
[7]
Su, X-H.; Zhang, M-L.; Li, L-G.; Huo, C-H.; Gu, Y-C.; Shi, Q-W. Chemical constituents of the plants of the genus Calophyllum. Chem. Biodivers., 2008, 5(12), 2579-2608.
[http://dx.doi.org/10.1002/cbdv.200890215] [PMID: 19089819]
[8]
Kontogiorgis, C.; Detsi, A.; Hadjipavlou-Litina, D. Coumarin-based drugs: a patent review (2008--present). Expert Opin. Ther. Pat., 2012, 22, 437-454.
[9]
Zhang, X-S.; Li, Z-W.; Shi, Z-J. Palladium-catalyzed base-accelerated direct C–H bond alkenylation of phenols to synthesize coumarin derivatives. Org. Chem. Front., 2014, 1, 44-49.
[http://dx.doi.org/10.1039/C3QO00010A]
[10]
Vekariya, R.H.; Patel, H.D. Recent advances in the synthesis of coumarin derivatives via Knoevenagel condensation: a review. Synth. Commun., 2014, 44, 2756-2788.
[http://dx.doi.org/10.1080/00397911.2014.926374]]
[11]
Medina, F.G.; Marrero, J.G.; Macías-Alonso, M.; González, M.C.; Córdova-Guerrero, I.; Teissier García, A.G.; Osegueda-Robles, S. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat. Prod. Rep., 2015, 32(10), 1472-1507.
[http://dx.doi.org/10.1039/C4NP00162A] [PMID: 26151411]
[12]
Hu, Y-Q.; Xu, Z.; Zhang, S.; Wu, X.; Ding, J-W.; Lv, Z.S.; Feng, L.S. Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 136, 122-130.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.004] [PMID: 28494250]
[13]
Kumar, V.; Niyaz, N.M.M.; Saminathan, S.; Wickramaratne, D.B.M. Coumarins from Paramignya Monophylla root bark. Phytochemistry, 1998, 49, 215-218.
[http://dx.doi.org/10.1016/S0031-9422(97)00760-7]
[14]
Goren, R.; Tomer, E. Effects of seselin and coumarin on growth, indoleacetic acid oxidase, and peroxidase, with special reference to cucumber (Cucumis sativa L.) radicles. Plant Physiol., 1971, 47(2), 312-316.
[http://dx.doi.org/10.1104/pp.47.2.312] [PMID: 16657614]
[15]
Rakotoarison, O.; Rabenau, I.; Lobstein, A.; Um, B-H.; Schott, C.; Anton, R.; Randriantsoa, A.; Andriantsitohaina, R. Vasorelaxing properties and bio-guided fractionation of Cedrelopsis grevei. Planta Med., 2003, 69(2), 179-181.
[http://dx.doi.org/10.1055/s-2003-37717] [PMID: 12624830]
[16]
Rashid, M.A.; Armstrong, J.A.; Gray, A.I.; Waterman, P.G. Pyranocoumarins as chemotaxonomic markers in Eriostemon Coccineus and Philotheca Citrina. Phytochemistry, 1991, 30, 4033-4035.
[http://dx.doi.org/10.1016/0031-9422(91)83459-X]
[17]
Dharmaratne, H.R.W.; Sotheeswaran, S.; Balasubramaniam, S.; Waight, E.S. Triterpenoids and coumarins from the leaves of Calophyllum Cordato-Oblongum. Phytochemistry, 1985, 24, 1553-1556.
[http://dx.doi.org/10.1016/S0031-9422(00)81064-X]]
[18]
Wang, L.; Ma, T.; Liu, G. Recent progress in calophyllum coumarins as potent anti-HIV agents.In:Medicinal Chemistry of Bioactive Natural Products; Editors Liang, X.T.; Fang, W.S., . J. Wiley & Sons, Inc.: New Jersey, 2006, p. 326.
[19]
Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina, J.H., II; McMahon, J.B.; Currens, M.J.; Buckheit, R.W., Jr; Hughes, S.H.; Cragg, G.M.; Boyd, M.R. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem., 1992, 35(15), 2735-2743.
[http://dx.doi.org/10.1021/jm00093a004] [PMID: 1379639]
[20]
Ishikawa, T. Anti-HIV-1 active calophyllum coumarins: distribution, chemistry, and activity. Heterocycles, 2000, 53, 453-474.
[21]
Pratap, R.; Ram, V.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev., 2014, 114(20), 10476-10526.
[http://dx.doi.org/10.1021/cr500075s] [PMID: 25303539]
[22]
Presley, C.C.; Valenciano, A.L.; Fernández-Murga, M.L.; Du, Y.; Shanaiah, N.; Cassera, M.B.; Goetz, M.; Clement, J.A.; Kingston, D.G.I. Antiplasmodial chromanes and chromenes from the monotypic plant species Koeberlinia spinosa. J. Nat. Prod., 2018, 81(3), 475-483.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00579] [PMID: 29048892]
[23]
Kinghorn, A.D.; Falk, H.; Gibbons, S.; Kobayashi, J., Eds.; Progress in the Chemistry of Organic Natural Products; , 2017, p. 60.
[24]
Claisen, L. Uber 2,2-dimethyl-cbroman. Chem. Ber., 1921, 54B, 200-203.
[http://dx.doi.org/10.1002/cber.19210540205]
[25]
Smith, L.I.; Ungnade, H.E.; Hoehn, H.H.; Wawzonek, S. The chemistry of Vitamine E. VI. The addition of dienes to phenols and hydroquinones. J. Org. Chem., 1939, 4, 311-317.
[26]
Youn, S.W.; Eom, J.I.; Ag, J.I. Ag(I)-catalyzed sequential C-C and C-O bond formations between phenols and dienes with atom economy. J. Org. Chem., 2006, 71(17), 6705-6707.
[http://dx.doi.org/10.1021/jo061221b] [PMID: 16901178]
[27]
Ismail, F.M.D.; Hilton, M.J.; Stefinovic, M. Versatile synthesis of ben-zopyrans via ortho-Claisen rearrangement of allyl ethers. Tetrahedron Lett., 1992, 33, 3795-3796.
[http://dx.doi.org/10.1016/0040-4039(92)80027-H]
[28]
He, L.; Galland, S.; Dufour, C.; Chen, G-R.; Dangles, O.; Fenet, B.; Praly, J-P. C-D-Glucopyranosyl derivatives of tocopherols-Synthesis and evalua-tion as amphiphilic antioxidants. Eur. J. Org. Chem., 2008, 2008(11), 1869-1883.
[http://dx.doi.org/10.1002/ejoc.200700885]
[29]
Vece, V.; Ricci, J.; Poulain-Martini, S.; Nava, P.; Carissan, Y.; Humbel, S.
Duñach, E. InIII-Catalysed tandem C–C and C–O bond formation between phenols and allylic acetates. Eur. J. Org. Chem., 2010, 2010(32), 6239-6248.
[http://dx.doi.org/10.1002/ejoc.201000738]]
[30]
Yamamoto, Y.; Itonaga, K. Synthesis of chromans via [3 + 3] cyclocoupling of phenols with allylic alcohols using a Mo/o-chloranil catalyst system. Org. Lett., 2009, 11(3), 717-720.
[http://dx.doi.org/10.1021/ol802800s] [PMID: 19117489]
[31]
Zhou, T.; Shi, Q.; Lee, K.H. Efficient microwave-assisted one-pot preparation of angular 2,2-dimethyl-2H-chromone containing compounds. Tetrahedron Lett., 2010, 51(33), 4382-4386.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.058] [PMID: 20936082]
[32]
Iwai, I.; Ide, J. Studies on acetylenic compounds. 32. Ring closure of propargyl ethers. 2. Chem. Pharm. Bull. (Tokyo), 1963, 11(8), 1042-1049.
[http://dx.doi.org/10.1248/cpb.11.1042] [PMID: 5888548]
[33]
Kenny, R.S.; Mashelkar, U.C.; Rane, D.M.; Bezawada, D.K. Intramolecular electrophilic hydro-arylation via Claisen rearrangement: synthesis of chromenes, heterothiochromenes and heterodihydro-thiochromenes. Tetrahedron, 2006, 62, 9280-9288.
[http://dx.doi.org/10.1016/j.tet.2006.06.079]
[34]
Sakthivel, P.; Ilangovan, A.; Kaushik, M.P. Natural product-inspired rational design, synthesis and biological evaluation of 2,3-dihydropyrano [2,3-f] chromen-4(8H)-one based hybrids as potential mitochondrial apoptosis inducers. Eur. J. Med. Chem., 2016, 122, 302-318.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.044] [PMID: 27376493]
[35]
Koch-Pomeranz, U.; Hansen, H-J.; Schmid, H. Die durch silberionen katalysierte umlagerung von propargyl-phenylather. Helv. Chim. Acta, 1973, 56, 2981-3004.
[http://dx.doi.org/10.1002/hlca.19730560838]
[36]
Almanza-Cruz, R.; Perez-Flores, F.; Brena, L. Bentonitic earth catalyzed rearrangement of aryl 1,1-dimethyl propargyl ethers. Synthesis of 2,2-dimethyl-2H-1-benzopyrans. J. Heterocycl. Chem., 1995, 32, 219-222.
[http://dx.doi.org/10.1002/jhet.5570320136]
[37]
Savitha, G.; Felix, K.; Perumal, P.T. Synthesis of novel 3-bromo-2H-chromene derivatives: palladium-mediated intramolecular cyclization of aryl propargyl ethers. Synlett, 2009, 13, 2079-2082.
[38]
Worlikar, S.A.; Kesharwani, T.; Yao, T.; Larock, R.C. Synthesis of 3,4-disubstituted 2H-benzopyrans through C-C bond formation via electrophilic cyclization. J. Org. Chem., 2007, 72(4), 1347-1353.
[http://dx.doi.org/10.1021/jo062234s] [PMID: 17288382]
[39]
Barluenga, J.; Trincado, M.; Marco-Arias, M.; Ballesteros, A.; Rubio, E.; González, J.M. Intramolecular iodoarylation reaction of alkynes: easy access to derivatives of benzofused heterocycles. Chem. Commun. (Camb.), 2005, 36(15), 2008-2010.
[http://dx.doi.org/10.1039/B500303B] [PMID: 15834488]
[40]
Bandaranayake, W.M.; Crombie, L.; Whiting, D.A. Novel methods for the synthesis of 2-2-dimethylchromens. Chem. Commun., 1969, (17), 970-971.
[http://dx.doi.org/10.1039/c29690000970]
[41]
Crombie, L.; Ponsford, R. Synthesis of cannabinoids by pyridine-cataiysed citral-olivetol condensation: Synthesis and structure of cannabicyclol, cannabichromen, (hashish extractives), citrylidene-cannabis, and related compounds. J. Chem. Soc. C, 1971, 796-804.
[http://dx.doi.org/10.1039/J39710000796]
[42]
Nayak, M.; Kim, I. Alkyne carbonyl metathesis as a means to make 4 acyl chromenes: syntheses of (±)-deguelin and (±)-munduserone. J. Org. Chem., 2015, 80(22), 11460-11467.
[http://dx.doi.org/10.1021/acs.joc.5b02160] [PMID: 26525067]
[43]
Melliou, E.; Magiatis, P.; Mitaku, S.; Skaltsounis, A-L.; Chinou, E.; Chinou, I. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J. Nat. Prod., 2005, 68(1), 78-82.
[http://dx.doi.org/10.1021/np0497447] [PMID: 15679322]
[44]
Liu, Z-J.; Guo, X-Y.; Liu, G. N-Oxide heterocycles and imidazoles replacing ring D of calanolides against Mycobacterium tuberculosis. Chin. Chem. Lett., 2016, 27, 51-54.
[http://dx.doi.org/10.1016/j.cclet.2015.11.001]]
[45]
Ballini, R.; Bosica, G.M.L.; Conforti, M.L.; Maggi, R.; Mazzacani, A.; Righi, P.; Sartori, G. Three-component process for the synthesis of 2-amino-2-chromenes in aqueous media. Tetrahedron, 2001, 57, 1395-1398.
[http://dx.doi.org/10.1016/S0040-4020(00)01121-2]]
[46]
El-Maghraby, A.M. Green chemistry: new synthesis of substituted chromenes and benzochromenes via three-component reaction utilizing Rochelle salt as novel green catalyst. Org. Chem. Int., 2014, 715091
[http://dx.doi.org/10.1155/2014/715091]
[47]
Mamaghani, M.; Nia, R.H.; Tavakoli, F.; Jahanshahi, P. Recent advances in the MCRs synthesis of chromenes: a review. Curr. Org. Chem., 2018, 22, 1704-1769.
[http://dx.doi.org/10.2174/1385272822666180530104302]
[48]
Hlubucek, J.; Ritchie, E.; Taylor, W.C. Synthesis of 2,2-dimethylchromenes. Aust. J. Chem., 1971, 24, 2347-2354.
[http://dx.doi.org/10.1071/CH9712347]
[49]
Reisch, J.; Voerste, A.A.W. Natural product chemistry. Part 181. Investigations on the synthesis of dihydropyrano- and dihydro-furanocoumarins by application of catalytic enantioselective cis-dihydro-xylation. J. Chem. Soc., Perkin Trans. 1, 1994, 3251-3256.
[http://dx.doi.org/10.1039/p19940003251]
[50]
Reisch, J. Dharmaratne. H.R.W. A convenient synthesis of the 2-dimethyl-2H-chromene-system. Z. Naturforsch. C, 1985, 40b, 636-638.
[http://dx.doi.org/10.1515/znb-1985-0512]
[51]
Rao, P.C.; Srimannarayana, G. Claisen rearrangement of 4-propar-gyloxycoumarins: formation of 2H,5H-pyrano[3,2-c][1]benzopyran-5-ones. Synth. Commun., 1990, 20, 535-540.
[http://dx.doi.org/10.1080/00397919008244901]
[52]
Majumdar, K.C.; Khan, A.T.; De, R.N. Regioselective synthesis of 2H-pyrano[3,2-c] benzopyran-5H-one and 3H-pyrano[2,3-c] benzopyran-5H-one. Synth. Commun., 1988, 18, 1589-1595.
[http://dx.doi.org/10.1080/00397918808081317]
[53]
Saidi, M.R.; Bigdeli, K. Microwave promoted and improved thermal synthesis of pyranocoumarins and furocoumarins. J. Chem. Res., 1998, (12), 800-801.
[54]
Godfrey, J.D.; Mueller, R.E.; Sedergran, T.C.; Soundararajan, N.; Culandrea, V.J. Improved synthesis of aryl l, l-dimethylpropargyl ethers. Tetrahedron Lett., 1994, 35, 6405-6408.
[http://dx.doi.org/10.1016/S0040-4039(00)78231-1]
[55]
Rodighiero, P.; Manzini, P.; Pastorini, G.; Bordin, F.; Guiotto, A. Synthesis of methyl derivatives of 8-desmehtylxanthyletine and 8-desmethylseseline, potential antiproliferative agents. J. Heterocycl. Chem., 1987, 24, 485-488.
[http://dx.doi.org/10.1002/jhet.5570240234]]
[56]
Majumdar, K.C.; Chatterjee, P. Regioselective synthesis of pyrano [3,2-f] chromen-2(7H)-ones. J. Chem. Research(S), 1996, 462
[57]
Ishikawa, T.; Mizutani, A.; Miwa, C.; Oku, Y.; Komano, N.; Takami, A.; Watanabe, T. Cesium fluoride-mediated Claisen rearrangements of phenyl propargyl ethers: substituent effects on ortho-alkoxy group on the benzene ring or modified propargyl residues. Heterocycles, 1997, 45, 2261-2272.
[http://dx.doi.org/10.3987/COM-97-7946]
[58]
Zhang, Q.; Chen, Y.; Xia, Y.; Yang, Z.; Xia, P. Thermal ring closure reaction of 4-methyl-7-(1,1-disubstituted propyn-2-yloxy) chromen-2-ones: the effects of the substituents at propargylic position reactivity and products. Synth. Commun., 2004, 34, 4507-4515.
[http://dx.doi.org/10.1081/SCC-200043203]
[59]
Majumdar, K.C.; Debnath, P.; Maji, P.K. Thiophenol-catalyzed Claisen rearrangement and radical cyclization: formation of furo- and pyrano-coumarin derivatives. Tetrahedron Lett., 2007, 48, 5265-5268.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.133]
[60]
Appendino, G.; Cravotto, G.; Tagliapietra, S.; Nano, G.M.; Palmisano, G. The chemistry of coumarin derivatives. Part 2. Reactions of 4-hydroxycoumarin with a, P-unsaturated aldehydes. Helv. Chim. Acta, 1990, 73, 1865-1878.
[http://dx.doi.org/10.1002/hlca.19900730709]
[61]
Appendino, G.; Cravotto, G.; Giovenzana, G.B.; Palmisano, G. A straightforward entry into polyketide monoprenylated furanocoumarins and pyranocoumarins. J. Nat. Prod., 1999, 62, 1627-1631.
[http://dx.doi.org/10.1021/np990241o]
[62]
Huang, C-N.; Kuo, P-Y.; Lin, C-H.; Yang, D-Y. Synthesis and characterization of 2H-pyrano[3,2-c] coumarin derivatives and their photochromic and redox properties. Tetrahedron, 2007, 63, 10025-10033.
[http://dx.doi.org/10.1016/j.tet.2007.07.041]
[63]
Lee, J.H.; Bang, H.B.; Han, S.Y.; Jun, J-G. An efficient synthesis of (+)-decursinol from umbelliferone. Tetrahedron Lett., 2007, 48, 2889-2892.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.088]
[64]
Moreau, J.; Hubert, C.; Batany, J.; Toupet, L.; Roisnel, T.; Hurvois, J-P.; Renaud, J-L. Metal-free Brønsted acid catalyzed formal [3 + 3] annulation. straightforward synthesis of dihydro-2H-chromenones, pyranones, and tetrahydroquinolinones. J. Org. Chem., 2009, 74(23), 8963-8973.
[http://dx.doi.org/10.1021/jo901238y] [PMID: 19950880]
[65]
Yadav, J.S.; Reddy, B.V.S.; Naveenkumar, V.; Srinivasa Rao, R.; Nagaiah, K. First example of ionic liquids-promoted domino Knoevenagel hetero-Diels-Alder reactions: a facile synthesis of pyrano [3,2-c] coumarins. Synthesis, 2004, 11, 1783-1788.
[http://dx.doi.org/10.1055/s-2003-829140]]
[66]
Khoshkholgh, M.J.; Lotfi, M.; Balalaie, S.; Rominger, F. Efficient synthesis of pyrano [2,3-c] coumarins via intramolecular domino Knoevenagel hetero-Diels-Alder reactions. Tetrahedron, 2009, 65, 4228-4234.
[http://dx.doi.org/10.1016/j.tet.2009.03.032]
[67]
Liu, Y.; Zhu, J.; Qian, J.; Jiang, B.; Xu, Z. Gold(III)-catalyzed tandem conjugate addition/annulation of 4-hydroxycoumarins with α, β-unsaturated ketones. J. Org. Chem., 2011, 76(21), 9096-9101.
[http://dx.doi.org/10.1021/jo201342m] [PMID: 21950409]
[68]
Bagdi, A.K.; Majee, A.; Hajra, A. Regioselective synthesis of pyrano [3,2-c] coumarins via Cu(II)-catalyzed tandem reaction. Tetrahedron Lett., 2013, 54, 3892-3895.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.061]
[69]
Nemoto, T.; Ohshima, T.; Shibasaki, M. Enantioselective total syntheses of (+)-decursin and related natural compounds using catalytic asymmetric ep-oxy-dation of an enone. Tetrahedron, 2003, 59, 6889-6897.
[http://dx.doi.org/10.1016/S0040-4020(03)00861-5]
[70]
Chattopadhyay, S.K.; Mondal, P.; Ghosh, D. A new route to pyranocoumar-inssand their benzannulated derivatives. Synthesis, 2014, 46, 3331-3340.
[http://dx.doi.org/10.1055/s-0034-1379141]
[71]
Kim, Y.; Moon, Y.; Kang, D.; Hong, S. Synthesis of heterocyclic-fused benzopyrans via the Pd(II)-catalyzed C-H alkenylation/C-O cyclization of flavones and coumarins. Org. Biomol. Chem., 2014, 12(21), 3413-3422.
[http://dx.doi.org/10.1039/C4OB00180J] [PMID: 24740372]
[72]
Ren, Q.; Kang, J.; Li, M.; Yuan, L.; Chen, R.; Wang, L. Regioselective access to structurally diverse coumarin analogues through iron-catalysed an-nulation reactions. Eur. J. Org. Chem., 2017, 5566-5571.
[http://dx.doi.org/10.1002/ejoc.201700999]
[73]
Lykakis, I.N.; Efe, C.; Gryparis, C.; Stratakis, M.Ph. 3PAuNTf2 as a superior catalyst for the selective synthesis of 2H-chromenes: application to the concise synthesis of benzopyran natural products. Eur. J. Org. Chem., 2011, 2334-2338
[http://dx.doi.org/10.1002/ejoc.201001674]
[74]
Majumdar, K.C.; Sinha, B.; Ansary, I.; Ganai, S.; Ghosh, D.; Roy, B.; Sridhar, B. Molecular iodine mediated regioselective synthesis of pyranocoumarins and bis-fused benzo-2H-pyran derivatives. Synthesis, 2014, 46, 1807-1814.
[http://dx.doi.org/10.1055/s-0033-1341027]
[75]
Paul, S.; Bhattacharyya, P.; Das, A.R. One-pot synthesis of dihydro-pyrano [2,3-c] chromenes via a three component coupling of aromatic aldehydes, malononitrile, and 3-hydroxycoumarin catalyzed by nano-structured ZnO in water: a green protocol. Tetrahedron Lett., 2011, 52, 4636-4641.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.101]
[76]
Li, K-T.; Lin, Y-B.; Yang, D-Y. One-pot synthesis of pyranocoumarins via microwave-assisted pseudo multicomponent reactions and their molecular switching properties. Org. Lett., 2012, 14(5), 1190-1193.
[http://dx.doi.org/10.1021/ol203229z] [PMID: 22332883]
[77]
Pradhan, K.; Paul, S.; Das, A.R. Magnetically retrievable nano crystalline CuFe2O4 catalyzed multi-component reaction: A facile and efficient synthesis of function-alized dihydropyrano [2,3-c] pyrazole, pyrano [3,2-c] coumarin and 4H-chromene derivatives in aqueous media. Catal. Sci. Technol., 2014, 4, 822-831.
[http://dx.doi.org/10.1039/c3cy00901g]
[78]
Pourshojaei, Y.; Jadidi, M-H.; Eskandari, K.; Foroumadi, A.; Asadipour, A. an eco-friendly synthesis of 4-aryl-substituted pyrano-fused coumarins as potential pharmacological active heterocycles using molybdenum oxide nanoparticles as an effective and recyclable catalyst. Res. Chem. Intermed., 2018, 44, 4195-4212.
[http://dx.doi.org/10.1007/s11164-018-3363-7]
[79]
Yamaguchi, S.; Miyakawa, R.; Yonezawa, S.; Kawase, Y. The synthesis of some mimethylpyranocoumarins and isopropenyldihydro-furanocoumarins. Bull. Chem. Soc. Jpn., 1989, 62, 3593-3597.
[http://dx.doi.org/10.1246/bcsj.62.3593]
[80]
Lee, Y.R.; Lee, W.K.; Noh, S.K.; Lyoo, W.S. A concise route for the synthesis of biologically interesting pyranocoumarins - seselin, (±)-cis-khellactone, (±)-qui-anhucoumarin D, and the (±)-5-deoxyprotobruceol-I regioisomer. Synthesis, 2006, 2006(5), 853-859.
[http://dx.doi.org/10.1055/s-2006-926329]
[81]
Barton, D.H.R.; Donnelly, D.M.X.; Finet, J-P.; Guiry, P.J. Total synthesis of isorobustin. Tetrahedron Lett., 1990, 31, 7449-7452.
[http://dx.doi.org/10.1016/S0040-4039(00)88512-3]
[82]
Suzuki, M.; Yu, D.; Morris-Natschke, S.L.; Smith, P.C.; Lee, K-H. Anti-AIDS agents 66: syntheses and anti-HIV activity of phenolic and aza 3′,4′-di-O-(-)-camphanoyl-(+)-cis-khellactone (DCK) derivatives. Bioorg. Med. Chem., 2007, 15(21), 6852-6858.
[http://dx.doi.org/10.1016/j.bmc.2006.12.013] [PMID: 17719228]
[83]
Lim, J.; Kim, I-H.; Kim, H.H.; Ahn, K-S.; Han, H. Enantioselective syntheses of decursinol angelate and decursin. Tetrahedron Lett., 2001, 42, 4001-4003.
[http://dx.doi.org/10.1016/S0040-4039(01)00642-6]
[84]
Trost, B.M.; Toste, F.D. A new palladium-catalyzed addition: a mild method for the synthesis of coumarins. J. Am. Chem. Soc., 1996, 118, 6305-6306.
[85]
Jia, C.; Piao, D.; Kitamura, T.; Fujiwara, Y. New method for preparation of coumarins and quinolinones via Pd-catalyzed intramolecular hydroarylation of C-C triple bonds. J. Org. Chem., 2000, 65(22), 7516-7522.
[http://dx.doi.org/10.1021/jo000861q] [PMID: 11076610]
[86]
Das Gupta, A.K.; Chatterje, R.M.; Das, K.R. Coumarins and related compounds. Part IV. Aluminium chloride catalysed reaction of phenols with methyl acrylate: a new approach to the synthesis of yydroxycoumarins. J. Chem. Soc. C, 1969, 29-33
[http://dx.doi.org/10.1039/j39690000029]
[87]
Lee, K.H.; Bang, H.B.; Han, S.Y.; Jun, J-G. A convenient total synthesis of (+)-decursinol from resorcinol. Bull. Korean Chem. Soc., 2006, 27, 2104-2106.
[http://dx.doi.org/10.5012/bkcs.2006.27.12.2104]]
[88]
Baldoumi, V.; Gautam, D.R.; Litinas, K.E.; Nicolaides, D.N. Convenient synthesis of linear pyrano[3,2-g]-, [2,3-g]- and angular pyrano [3,2-f] coumarins from 4[(1,1-dimethyl-2-propynyl)oxy]phenol. Tetrahedron, 2006, 62, 8016-8020.
[http://dx.doi.org/10.1016/j.tet.2006.06.032]
[89]
Litinas, K.E.; Symeonidis, T.S. Convenient synthesis of fused pyrano[3,2-h]- and furo[3,2-h] benzo [f]coumarins from naphthalene-2,3-diol. Tetrahedron, 2010, 66, 1289-1293.
[http://dx.doi.org/10.1016/j.tet.2009.12.016]
[90]
Nicolaides, D.N.; Gautam, D.R.; Litinas, K.E.; Hadjipavlou-Litina, D.J.; Fylaktakidou, K.C. Synthesis and evaluation of the antioxidant and antiinflammatory activities of some benzo[l]khellactone derivatives and analogues. Eur. J. Med. Chem., 2004, 39(4), 323-332.
[http://dx.doi.org/10.1016/j.ejmech.2004.01.003] [PMID: 15072841]
[91]
Tsoukka, M.; Litinas, K.E.; Nicolaides, D.N.; Hadjipavlou-Litina, D.J. Synthesis and biological evaluation of new benzo[f]furo[2,3-h]- and benzo [f] pyrano [2,3-h] coumarin derivatives. J. Heterocycl. Chem., 2007, 44, 529-534.
[http://dx.doi.org/10.1002/jhet.5570440304]
[92]
Liu, X-G.; Zhang, S-S.; Jiang, C-Y.; Wu, J-Q.; Li, Q.; Wang, H. Cp*Co(III)-Catalyzed annulations of 2-alkenylphenols with CO: mild access to coumarin derivatives. Org. Lett., 2015, 17(21), 5404-5407.
[http://dx.doi.org/10.1021/acs.orglett.5b02728] [PMID: 26451846]
[93]
Murray, R.D.H.; Forbes, I.T. Claisen rearrangements-VIII. Synthesis of the coumarins, avicennol, dipetaline and dipetalolactone. Tetrahedron, 1978, 34, 1411-1414.
[http://dx.doi.org/10.1016/0040-4020(78)88340-9]
[94]
Palmer, C.J.; Josephs, J.L. Synthesis of the Calophyllum coumarins. Part 2. J. Chem. Soc., Perkin Trans. 1, 1995, 3135-3152.
[http://dx.doi.org/10.1039/p19950003135]
[95]
Palmer, C.J.; Josephs, J.L. Synthesis of the Calophyllum coumarins. Tetrahedron Lett., 1994, 35, 5363-5366.
[http://dx.doi.org/10.1016/S0040-4039(00)73500-3]
[96]
Fox, M.E.; Lennon, I.C.; Meek, G. A novel synthesis of 5-hydroxy-2,2-dimethyl-10-propyl-2H-pyrano [2,3-f] chromen-8-one. Tetrahedron Lett., 2002, 43, 2899-2902.
[http://dx.doi.org/10.1016/S0040-4039(02)00428-8]
[97]
Trost, B.M.; Toste, F.D. Catalytic enantioselective approach to chromans and chromanols. A total synthesis of (-)-Calanolides A and B and the vitamin E nucleus. J. Am. Chem. Soc., 1998, 120, 9074-9075.
[http://dx.doi.org/10.1021/ja981142k]
[98]
Vlachou, E-E.N.; Gabriel, C.; Litinas, K.E. One-pot synthesis of fused dipyranocoumarins from dihydroxycoumarins and propargyl chlorides under microwave irradiation. J. Heterocycl. Chem., 2019, 56, 99-107.
[99]
Chenera, B.; West, M.L.; Finkelstein, J.A.; Dreyer, G.B. Total synthesis of (+)-Calanolide A, a non-nucleoside inhibitor of HIV-1 reverse transcriptase. J. Org. Chem., 1993, 58, 5605-5606.
[http://dx.doi.org/10.1021/jo00073a015]
[100]
Kucherenko, A.; Flavin, M.T.; Boulanger, W.A.; Khilevich, A.; Shone, R.L.; Rizzo, J.D.; Sheinkman, A.K.; Xu, Z-Q. Novel approach for synthesis of (+)-calanolide A and its anti-HIV activity. Tetrahedron Lett., 1995, 36, 5475-5478.
[http://dx.doi.org/10.1016/00404-0399(50)1059Q-]
[101]
Flavin, M.T.; Rizzo, J.D.; Khilevich, A.; Kucherenko, A.; Sheinkman, A.K.; Vilaychack, V.; Lin, L.; Chen, W.; Greenwood, E.M.; Pengsuparp, T.; Pezzuto, J.M.; Hughes, S.H.; Flavin, T.M.; Cibulski, M.; Boulanger, W.A.; Shone, R.L.; Xu, Z-Q. Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (+/-)-calanolide A and its enantiomers. J. Med. Chem., 1996, 39(6), 1303-1313.
[http://dx.doi.org/10.1021/jm950797i] [PMID: 8632437]
[102]
Khilevich, A.; Mar, A.; Flavin, M.T.; Rizzo, J.D.; Lin, L.; Dzekhtser, S.; Brankovic, D.; Zhang, H.; Chen, W.; Liao, S.; Zembower, D.E.; Xu, Z-Q. Synthesis of (+)-Calanolide A, an anti-HIV agent, via enzyme-catalyzed resolution of the aldol products. Tetrahedron Asymmetry, 1996, 7, 3315-3326.
[http://dx.doi.org/10.1016/0957-4166(96)00433-8]
[103]
Deshpande, P.P.; Tagliaferri, F.; Victory, S.F.; Yan, S.; Baker, D.C. Synthesis of optically active calanolides A and B. J. Org. Chem., 1995, 60, 2964-2965.
[http://dx.doi.org/10.1021/jo00115a007]]
[104]
Rehder, K.S.; Hristova-Kazmierski, M.K.; Kepler, J.A. Synthesis of [12-3H]-. Calanolide A. J. Label. Comp. Radiopharm., 1996, 38, 1077-1081.
[http://dx.doi.org/10.1002/(SICI)1099-1344(199612)38:12<1077:AID-JLCR930>3.0.CO;2-#]]
[105]
Tanaka, T.; Kumamoto, T.; Ishikawa, T. Enantioselective total synthesis of anti HIV-1 active (+)-calanolide A through a quinine-catalyzed asymmetric intra-molecular oxo-Michael addition. Tetrahedron Lett., 2000, 41, 10229-10232.
[http://dx.doi.org/10.1016/S0040-4039(00)01820-7]
[106]
Sekino, E.; Kumamoto, T.; Tanaka, T.; Ikeda, T.; Ishikawa, T. Concise synthesis of anti-HIV-1 active (+)-inophyllum B and (+)-calanolide A by application of (-)-quinine-catalyzed intramolecular oxo-Michael addition. J. Org. Chem., 2004, 69(8), 2760-2767.
[http://dx.doi.org/10.1021/jo035753t] [PMID: 15074925]
[107]
Promsuwan, P.; Yenjai, C. Synthesis and cytotoxicity of coumarin derivatives and nordentatin. Asian J. Chem., 2013, 25, 3629-3632.
[http://dx.doi.org/10.14233/ajchem.2013.13687]
[108]
Rehder, K.S.; Kepler, J.A. Total synthesis of Calanolide A. Synth. Commun., 1996, 26, 4005-4021.
[http://dx.doi.org/10.1080/00397919608003823]
[109]
Schmidt, B.; Schultze, C. A one-pot synthesis of pyranocoumarins through microwave- promoted propargyl Claisen rearrangement/Wittig olefination. Eur. J. Org. Chem., 2018, 2018(2), 223-227.
[http://dx.doi.org/10.1002/ejoc.201701684]
[110]
Selim, Y.; Ouf, N.; Sakran, M. Fremy’s salt-mediated oxidative addition. A new approach in the total synthesis of naturally dipetalolactone and its immunomodulatory activity. Molecules, 2013, 18(9), 11485-11495.
[http://dx.doi.org/10.3390/molecules180911485] [PMID: 24043143]
[111]
Huang, L.; Kashiwada, Y.; Cosentino, L.M.; Fan, S.; Chen, C-H.; McPhail, A.T.; Fujioka, T.; Mihashi, K.; Lee, K-H. Anti-AIDS agents. 15. Synthesis and anti-HIV activity of dihydroseselins and related analogs. J. Med. Chem., 1994, 37(23), 3947-3955.
[http://dx.doi.org/10.1021/jm00049a014] [PMID: 7525962]
[112]
Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina II, J.H.; McMahon, J.B.; Currens, M.J.; Buckheit Jr, R.W.; Hughes, S.H.; Gragg, G.M.; Boyd, M.R. HIV inhibitory natural products. Part 7. The calanolides, a novel class of coumarin derivatives from the tropical rainforest tree, Calophyllum laningerum. J. Med. Chem., 1993, 36, 1110.
[113]
McKee, T.C.; Fuller, R.W.; Covington, C.D.; Cardellina, J.H., II; Gulakowski, R.J.; Krepps, B.L.; McMahon, J.B.; Boyd, M.R. New pyranocoumarins isolated from Calophyllum lanigerum and Calophyllum teysmannii. J. Nat. Prod., 1996, 59(8), 754-758.
[http://dx.doi.org/10.1021/np9603784] [PMID: 8792623]
[114]
Puller, R.W.; Bokesch, H.R.; Gustafson, K.R.; McKee, T.C.; Cardellina, J.H., II; McMahon, J.B.; Cragg, G.M.; Soejarto, D.D.; Boyd, M.R. HIV-inhibitory coumarins from latex of the tropical rainforest tree Calophyllum teysmannii var. inophylloide. Bioorg. Med. Chem. Lett., 1994, 4, 1961-1964.
[http://dx.doi.org/10.1016/S0960-894X(01)80543-6]
[115]
McKee, T.C.; Cardellina, J.H., II; Dreyer, G.B.; Boyd, M.R. The pseudocalanolides: structure revision of calanolides C and D. J. Nat. Prod., 1995, 58(6), 916-920.
[http://dx.doi.org/10.1021/np50120a015] [PMID: 7545738]
[116]
Zembower, D.E.; Liao, S.; Flavin, M.T.; Xu, Z-Q.; Stup, T.L.; Buckheit, R.W., Jr; Khilevich, A.; Mar, A.A.; Sheinkman, A.K. Structural analogues of the calanolide anti-HIV agents. Modification of the trans-10,11-dimethyldihydropyran-12-ol ring (ring C). J. Med. Chem., 1997, 40(6), 1005-1017.
[http://dx.doi.org/10.1021/jm960355m] [PMID: 9083491]
[117]
Newman, R.A.; Chen, W.; Madden, T.L. Pharmaceutical properties of related calanolide compounds with activity against human immunodeficiency virus. J. Pharm. Sci., 1998, 87(9), 1077-1080.
[http://dx.doi.org/10.1021/js980122d] [PMID: 9724557]
[118]
Barnard, D.L.; Xu, Ze.; Stowell, V.D.; Yuan, H.; Smee, D.F.; Samy, R.; Sidwell, R.W.; Nielsen, M.K.; Sun, L.; Cao, H.; Li, A.; Quint, C.; Deignan, J.; Crabb, J.; Flavin, M.T. Coumarins and pyranocoumarins, potential novel pharmacophores for inhibition of measles virus replication. Antivir. Chem. Chemother., 2002, 13(1), 39-59.
[http://dx.doi.org/10.1177/095632020201300104] [PMID: 12180648]
[119]
Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.; Bartus, H.R.; Johnson, R.K.; Hertzberg, R.P.; Westley, J.W. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 1993, 36(26), 4131-4138.
[http://dx.doi.org/10.1021/jm00078a001] [PMID: 7506311]
[120]
Zhang, J.; Li, L.; Jiang, C.; Xing, C.; Kim, S-H.; Lü, J. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer. Agents Med. Chem., 2012, 12(10), 1239-1254.
[http://dx.doi.org/10.2174/187152012803833071] [PMID: 22583405]
[121]
Ahn, K-S.; Sim, W-S.; Kim, I-H. Decursin: a cytotoxic agent and protein kinase C activator from the root of Angelica gigas. Planta Med., 1996, 62(1), 7-9.
[http://dx.doi.org/10.1055/s-2006-957785] [PMID: 8720379]
[122]
Ahn, K.S.; Sim, W-S.; Lee, I.K.; Seu, Y-B.; Kim, I.H. Decursinol angelate: A cytotoxic and protein kinase C activating agent from the root of Angelica gigas. Planta Med., 1997, 63(4), 360-361.
[http://dx.doi.org/10.1055/s-2006-957701] [PMID: 9270380]
[123]
Lee, S.; Lee, Y.S.; Jung, S.H.; Shin, K.H.; Kim, B-K.; Kang, S.S. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch. Pharm. Res., 2003, 26(9), 727-730.
[http://dx.doi.org/10.1007/BF02976682] [PMID: 14560921]
[124]
Jiang, C.; Guo, J.; Wang, Z.; Xiao, B.; Lee, H-J.; Lee, E-O.; Kim, S-H.; Lu, J. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells. Breast Cancer Res., 2007, 9(6), R77.
[http://dx.doi.org/10.1186/bcr1790] [PMID: 17986353]
[125]
Guo, J.; Jiang, C.; Wang, Z.; Lee, H-J.; Hu, H.; Malewicz, B.; Lee, H-J.; Lee, J-H.; Baek, N-I.; Jeong, J-H.; Kim, D-K.; Kang, K-S.; Kim, S-H.; Lu, J. A novel class of pyranocoumarin anti-androgen receptor signaling compounds. Mol. Cancer Ther., 2007, 6(3), 907-917.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0231] [PMID: 17363485]
[126]
Yim, D.; Singh, R.P.; Agarwal, C.; Lee, S.; Chi, H.; Agarwal, R. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res., 2005, 65(3), 1035-1044.
[PMID: 15705905]
[127]
Song, G-Y.; Lee, J-H.; Cho, M.; Park, B-S.; Kim, D-E.; Oh, S. Decursin suppresses human androgen-independent PC3 prostate cancer cell proliferation by promoting the degradation of β-catenin. Mol. Pharmacol., 2007, 72(6), 1599-1606.
[http://dx.doi.org/10.1124/mol.107.040253] [PMID: 17855653]
[128]
Choi, S-R.; Lee, J-H.; Kim, J-Y.; Park, K-W.; Jeong, I-Y.; Shim, K-H.; Lee, M-K.; Seo, K-I. Decursin from Angelicagigas Nakai induces apoptosis in RC-58T/h/SA#4 primary human prostate cancer cells via a mitochondria-related caspase pathway. Food Chem. Toxicol., 2011, 49(10), 2517-2523.
[http://dx.doi.org/10.1016/j.fct.2011.06.016] [PMID: 21693165]
[129]
Gwak, J.; Lee, J-H.; Chung, Y-H.; Song, G-Y.; Oh, S. Small molecule-based promotion of PKCIα-mediated β-catenin degradation suppresses the proliferation of CRT-positive cancer cells. PLoS One, 2012, 7(10)e46697
[http://dx.doi.org/10.1371/journal.pone.0046697] [PMID: 23071615]
[130]
Lee, J-H.; Kim, M-A.; Park, S.; Cho, S-H.; Yun, E. O, Y.S.; Kim, J.; Goo, J.I.; Yun, M.Y.; Choi, Y.; Oh, S.; Song, G.Y. Synthesis and evaluation of (+)-decursin derivatives as inhibitors of the Wnt/β-catenin pathway. Bioorg. Med. Chem. Lett., 2016, 26(15), 3529-3532.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.029] [PMID: 27329797]
[131]
Yim, N-H.; Lee, J.H.; Cho, W-K.; Yang, M.C.; Kwak, D.H.; Ma, J.Y. Decursin and decursinol angelate from Angelica gigas Nakai induce apoptosis via induction of TRAIL expression on cervical cancer cells. Eur. J. Integr. Med., 2011, 3, e299-e307.
[http://dx.doi.org/10.1016/j.eujim.2011.09.007]
[132]
Jung, M.H.; Lee, S.H.; Ahn, E-M.; Lee, Y.M. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway. Carcinogenesis, 2009, 30(4), 655-661.
[http://dx.doi.org/10.1093/carcin/bgp039] [PMID: 19228635]
[133]
Kim, H.H.; Ahn, K.S.; Han, H.; Choung, S.Y.; Choi, S-Y.; Kim, I-H. Decursin and PDBu: Two PKC activators distinctively acting in the megakaryocytic differentiation of K562 human erythroleukemia cells. Leuk. Res., 2005, 29(12), 1407-1413.
[http://dx.doi.org/10.1016/j.leukres.2005.05.001] [PMID: 15992925]
[134]
Shehzad, A.; Islam, S.U.; Ahn, E-M.; Lee, Y.M.; Lee, Y.S. Decursinol angelate inhibits PGE2-induced survival of the human leukemia HL-60 cell line via regulation of the EP2 receptor and NFIκB pathway. Cancer Biol. Ther., 2016, 17(9), 985-993.
[http://dx.doi.org/10.1080/15384047.2016.1210740] [PMID: 27414656]
[135]
Kim, W-J.; Lee, S-J.; Choi, Y.D.; Moon, S-K. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation. Int. J. Mol. Med., 2010, 25, 635-641.
[136]
Son, S.H.; Park, K-K.; Park, S.K.; Kim, Y.C.; Kim, Y.S.; Lee, S-K.; Chung, W-Y. Decursin and decursinol from Angelica gigas inhibit the lung metastasis of murine colon carcinoma. Phytother. Res., 2011, 25, 959-964.
[137]
Kim, H.J.; Kim, S.M.; Park, K-R.; Jang, H-J.; Na, Y-S.; Ahn, K.S.; Kim, S-H.; Ahn, K.S. Decursin chemosensitizes human multiple myeloma cells through inhibition of STAT3 signaling pathway. Cancer Lett., 2011, 301(1), 29-37.
[http://dx.doi.org/10.1016/j.canlet.2010.11.002] [PMID: 21122982]
[138]
Jang, J.; Jeong, S-J.; Kwon, H-Y.; Jung, J.H.; Sohn, E.J.; Lee, H-J.; Kim, J-H.; Kim, S-H.; Kim, J.H.; Kim, S-H. Decursin and doxorubicin are in synergy for the induction of apoptosis via STAT3 and/or mTOR pathways in human multiple myeloma cells. Evid. Based Complement. Alternat. Med., 2013, 2013506324
[http://dx.doi.org/10.1155/2013/506324] [PMID: 23818927]
[139]
Kim, B.S.; Seo, H.; Kim, H-J.; Bae, S.M.; Son, H-N.; Lee, Y.J.; Ryu, S.; Park, R-W.; Nam, J-O. Decursin from Angelica gigas Nakai inhibits B16F10 melanoma growth through induction of apoptosis. J. Med. Food, 2015, 18(10), 1121-1127.
[http://dx.doi.org/10.1089/jmf.2014.3397] [PMID: 26336081]
[140]
Magiatis, P.; Melliou, E.; Skaltsounis, A-L.; Mitaku, S.; Léonce, S.; Renard, P.; Pierré, A.; Atassi, G. Synthesis and cytotoxic activity of pyranocoumarins of the seselin and xanthyletin series. J. Nat. Prod., 1998, 61(8), 982-986.
[http://dx.doi.org/10.1021/np9800295] [PMID: 9722480]
[141]
Gunatilaka, A.A.L.; Kingston, D.G.I.; Wijeratne, E.M.K.; Bandara, B.M.R.; Hofmann, G.A.; Johnson, R.K. Biological activity of some coumarins from Sri Lankan Rutaceae. J. Nat. Prod., 1994, 57(4), 518-520.
[http://dx.doi.org/10.1021/np50106a013] [PMID: 8021652]
[142]
Lee, J.; Lee, Y.J.; Kim, J.; Bang, O-S. Pyranocoumarins from root extracts of Peucedanum praeruptorum Dunn with multidrug resistance reversal and anti-inflammatory activities. Molecules, 2015, 20(12), 20967-20978.
[http://dx.doi.org/10.3390/molecules201219738] [PMID: 26610461]
[143]
Ren, L.; Du, X.; Hu, M.; Yan, C.; Liang, T.; Li, Q. Design, synthesis and antitumor activity of novel 4-methyl-(3‘S,4’S)-cis-khellactone derivatives. Molecules, 2013, 18(4), 4158-4169.
[http://dx.doi.org/10.3390/molecules18044158] [PMID: 23567363]
[144]
López-Pérez, J.L.; Olmedo, D.A.; Del Olmo, E.; Vásquez, Y.; Solís, P.N.; Gupta, M.P.; San Feliciano, A. Cytotoxic 4-phenylcoumarins from the leaves of Marila pluricostata. J. Nat. Prod., 2005, 68(3), 369-373.
[http://dx.doi.org/10.1021/np049642g] [PMID: 15787438]
[145]
Itoigawa, M.; Ito, C.; Tan, H.T-W.; Kuchide, M.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer chemopreventive agents, 4-phenylcoumarins from Calophyllum inophyllum. Cancer Lett., 2001, 169(1), 15-19.
[http://dx.doi.org/10.1016/S0304-3835(01)00521-3] [PMID: 11410320]
[146]
Kang, S.Y.; Lee, K.Y.; Sung, S.H.; Park, M.J.; Kim, Y.C. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J. Nat. Prod., 2001, 64(5), 683-685.
[http://dx.doi.org/10.1021/np000441w] [PMID: 11374978]
[147]
Kang, S.Y.; Lee, K.Y.; Park, M.J.; Kim, Y.C.; Markelonis, G.J.; Oh, T.H.; Kim, Y.C. Decursin from Angelica gigas mitigates amnesia induced by scopolamine in mice. Neurobiol. Learn. Mem., 2003, 79(1), 11-18.
[http://dx.doi.org/10.1016/S1074-7427(02)00007-2] [PMID: 12482674]
[148]
Kang, S.Y.; Lee, K.Y.; Sung, S.H.; Kim, Y.C. Four new neuroprotective dihydropyranocoumarins from Angelica gigas. J. Nat. Prod., 2005, 68(1), 56-59.
[http://dx.doi.org/10.1021/np049705v] [PMID: 15679317]
[149]
Kang, S.Y.; Kim, Y.C. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity. J. Pharm. Pharmacol., 2007, 59(6), 863-870.
[http://dx.doi.org/10.1211/jpp.59.6.0013] [PMID: 17637179]
[150]
Yan, J-J.; Kim, D-H.; Moon, Y-S.; Jung, J-S.; Ahn, E-M.; Baek, N-I.; Song, D-K. Protection against β-amyloid peptide-induced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0278-5846(03)00168-4] [PMID: 14687853]
[151]
Li, L.; Du, J.; Zou, L.; Xia, H.; Wu, T.; Kim, Y.; Lee, Y. The neuroprotective effects of decursin isolated from Angelica gigas Nakai against amyloid β-protein-induced apoptosis in PC12 cells via a mitochondria-related caspase pathway. Neurochem. Res., 2015, 40(8), 1555-1562.
[http://dx.doi.org/10.1007/s11064-015-1623-0] [PMID: 26077922]
[152]
Li, L.; Yang, Y.; Zheng, J.; Cai, G.; Lee, Y.; Du, J. Decursin attenuates the amyloid-β-induced inflammatory response in PC12 cells via MAPK and nuclear factor-κB pathway. Phytother. Res., 2018, 32(2), 251-258.
[http://dx.doi.org/10.1002/ptr.5962] [PMID: 29193354]]
[153]
Yan, B.C.; Park, J.H.; Shin, B.N.; Ahn, J.H.; Kim, I.H.; Lee, J-C.; Yoo, K-Y.; Hwang, I.K.; Choi, J.H.; Park, J.H.; Lee, Y.L.; Suh, H-W.; Jun, J-G.; Kwon, Y-G.; Kim, Y-M.; Kwon, S-H.; Her, S.; Kim, J.S.; Hyun, B-H.; Kim, C-K.; Cho, J.H.; Lee, C.H.; Won, M-H. Neuroprotective effect of a new synthetic aspirin-decursinol adduct in experimental animal models of ischemic stroke. PLoS One, 2013, 8(9)e74886
[http://dx.doi.org/10.1371/journal.pone.0074886] [PMID: 24073226]
[154]
Hwang, J-T.; Kim, S.H.; Hur, H.J.; Kim, H.J.; Park, J.H.; Sung, M.J.; Yang, H.J.; Ryu, S.Y.; Kim, Y.S.; Cha, M.R.; Kim, M.S.; Kwon, D.Y. Decursin, an active compound isolated from Angelica gigas, inhibits fat accumulation, reduces adipocytokine secretion and improves glucose tolerance in mice fed a high-fat diet. Phytother. Res., 2012, 26(5), 633-638.
[http://dx.doi.org/10.1002/ptr.3612] [PMID: 21972114]]
[155]
Goel, R.K.; Maiti, R.N.; Manickam, M.; Ray, A.B. Antiulcer activity of naturally occurring pyrano-coumarin and isocoumarins and their effect on prostanoid synthesis using human colonic mucosa. Indian J. Exp. Biol., 1997, 35(10), 1080-1083.
[PMID: 9475044]
[156]
Arumugam, S.; Kavimani, S.; Kadalmani, B.; Ahmed, A.B.A.; Akbarsha, M.A.; Rao, M.V. Antidiabetic activity of leaf and callus extracts of Aegle marmelos in rabbit. Sci. Asia, 2008, 34, 317-321.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2008.34.317]
[157]
Santhoshkumari, K.S.K.S.; Devi, K.S. Hypoglycemic effect of a few medicinal plants. Anc. Sci. Life, 1990, IX, 221-223.
[158]
Das, A.V.; Padayatti, P.S.; Paulose, C.S. Effect of leaf extract of Aegle marmelose (L.) Correa ex Roxb. on histological and ultrastructural changes in tissues of streptozotocin induced diabetic rats. Indian J. Exp. Biol., 1996, 34(4), 341-345.
[PMID: 8698423]
[159]
Domínguez-Mendoza, E.A.; Cornejo-Garrido, J.; Burgueño-Tapia, E.; Ordaz-Pichardo, C. Antidiabetic effect, antioxidant activity, and toxicity of 3′,4′-Di-O-acetyl-cis-khellactone in Streptozotocin-induced diabetic rats. Bioorg. Med. Chem. Lett., 2016, 26(16), 4086-4091.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.071] [PMID: 27397496]
[160]
Kumar, A.; Maurya, R.A.; Sharma, S.; Ahmad, P.; Singh, A.B.; Bhatia, G.; Srivastava, A.K. Pyranocoumarins: a new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg. Med. Chem. Lett., 2009, 19(22), 6447-6451.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.031] [PMID: 19811915]
[161]
Verotta, L.; Lovaglio, E.; Vidari, G.; Finzi, P.V.; Neri, M.G.; Raimondi, A.; Parapini, S.; Taramelli, D.; Riva, A.; Bombardelli, E. 4-Alkyl- and 4-phenylcoumarins from Mesua ferrea as promising multidrug resistant antibacterials. Phytochemistry, 2004, 65(21), 2867-2879.
[http://dx.doi.org/10.1016/j.phytochem.2004.07.001] [PMID: 15501254]
[162]
Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 2009, 14(3), 939-952.
[http://dx.doi.org/10.3390/molecules14030939] [PMID: 19255552]
[163]
Xu, Z-Q.; Pupek, K.; Suling, W.J.; Enache, L.; Flavin, M.T. Pyranocoumarin, a novel anti-TB pharmacophore: synthesis and biological evaluation against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2006, 14(13), 4610-4626.
[http://dx.doi.org/10.1016/j.bmc.2006.02.017] [PMID: 16513358]
[164]
Zheng, P.; Somersan-Karakaya, S.; Lu, S.; Roberts, J.; Pingle, M.; Warrier, T.; Little, D.; Guo, X.; Brickner, S.J.; Nathan, C.F.; Gold, B.; Liu, G. Synthetic calanolides with bactericidal activity against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2014, 57(9), 3755-3772.
[http://dx.doi.org/10.1021/jm4019228] [PMID: 24694175]
[165]
Rana, B.K.; Singh, U.P.; Taneja, V. Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. J. Ethnopharmacol., 1997, 57(1), 29-34.
[http://dx.doi.org/10.1016/S0378-8741(97)00044-5] [PMID: 9234162]
[166]
Yoon, M-Y.; Kim, Y.S.; Ryu, S.Y.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Cha, B.; Han, S-S.; Kim, J-C. In vitro and in vivo antifungal activities of decursin and decursinol angelate isolated from Angelica gigas against Magnaporthe oryzae, the causal agent of rice blast. Pestic. Biochem. Physiol., 2011, 101, 118-124.
[http://dx.doi.org/10.1016/j.pestbp.2011.08.013]
[167]
Lin, T-T.; Huang, Y-Y.; Tang, G-H.; Cheng, Z-B.; Liu, X.; Luo, H-B.; Yin, S. Prenylated coumarins: Natural phosphodiesterase-4 inhibitors from Toddalia asiatica. J. Nat. Prod., 2014, 77(4), 955-962.
[http://dx.doi.org/10.1021/np401040d] [PMID: 24597921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy