Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Role of Cellular Biomolecules in Screening, Diagnosis and Treatment of Colorectal Cancer

Author(s): Xiang-Lin Mei and Qing-Fan Zheng*

Volume 20, Issue 11, 2019

Page: [880 - 888] Pages: 9

DOI: 10.2174/1389200220666191018153428

Price: $65

conference banner
Abstract

Background: Prevention is the primary strategy to avoid the occurrence and mortality of colorectal cancer. Generally, the concentrations of tumor markers tested during the diagnosis and believed to assist the detection of disease in the early stages of cancer. Some of the biomarkers are also important during treatment and real-time monitoring of the progress of treatment.

Methods: We considered a rationale search of key references from the database of peer-reviewed research and review literatures of colorectal cancer. The topic of search was focused on the novel methods and modern techniques of Screening, Diagnosis, and Treatment of colorectal cancer. The screened publications were critically analysed using a deductive content analysis and the matter was put in separate headings and sub headings.

Results: It was found that endoscopic examination, early detection, and surgery are some of the common strategies to manage colorectal cancer because late stages are difficult to treat due to the high-cost requirement and fewer chances of survival. As far as chemotherapy is concerned, systemic chemotherapy has been shown to offer the maximum benefit to patients with cancer metastasis. Among different chemotherapy measures, primary colorectal cancer prevention agents involve pharmaceuticals, phytochemicals, and dietary supplements are some of the standard options.

Conclusion: In this review article, we have provided a comprehensive analysis of different biomarkers for the detection of colorectal cancer as well as different formulations developed for efficient treatment of the disease. The use of dietary supplements, the combinatorial approach, and nanotechnology-based strategies for colorectal cancer diagnosis and treatment are some of the recent and modern methods of cancer management.

Keywords: Colorectal cancer, cancer metastasis, cancer diagnosis, angiogenesis, biomolecules, drug delivery.

Graphical Abstract
[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Siegel, R.; Desantis, C.; Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(2), 104-117.
[http://dx.doi.org/10.3322/caac.21220] [PMID: 24639052]
[4]
Langan, R.C.; Mullinax, J.E.; Raiji, M.T.; Upham, T.; Summers, T.; Stojadinovic, A.; Avital, I. Colorectal cancer biomarkers and the potential role of cancer stem cells. J. Cancer, 2013, 4(3), 241-250.
[http://dx.doi.org/10.7150/jca.5832] [PMID: 23459666]
[5]
Tawfik, A. Prostate-Specific Antigen (PSA)-based population screening for prostate cancer: An economic analysis. Ont. Health Technol. Assess. Ser., 2015, 15(11), 1-37.
[PMID: 26366237]
[6]
Heijnsdijk, E.A.; Denham, D.; de Koning, H.J. The cost-effectiveness of prostate cancer detection with the use of prostate health index. Value Health, 2016, 19(2), 153-157.
[http://dx.doi.org/10.1016/j.jval.2015.12.002] [PMID: 27021748]
[7]
Osborn, N.K.; Ahlquist, D.A. Stool screening for colorectal cancer: molecular approaches. Gastroenterology, 2005, 128(1), 192-206.
[http://dx.doi.org/10.1053/j.gastro.2004.10.041] [PMID: 15633136]
[8]
Traverso, G.; Shuber, A.; Levin, B.; Johnson, C.; Olsson, L.; Schoetz, D.J., Jr; Hamilton, S.R.; Boynton, K.; Kinzler, K.W.; Vogelstein, B. Detection of APC mutations in fecal DNA from patients with colorectal tumors. N. Engl. J. Med., 2002, 346(5), 311-320.
[http://dx.doi.org/10.1056/NEJMoa012294] [PMID: 11821507]
[9]
Bosch, L.J.; Carvalho, B.; Fijneman, R.J.; Jimenez, C.R.; Pinedo, H.M.; van Engeland, M.; Meijer, G.A. Molecular tests for colorectal cancer screening. Clin. Colorectal Cancer, 2011, 10(1), 8-23.
[http://dx.doi.org/10.3816/CCC.2011.n.002] [PMID: 21609931]
[10]
Koga, Y.; Yasunaga, M.; Moriya, Y.; Akasu, T.; Fujita, S.; Yamamoto, S.; Kozu, T.; Baba, H.; Matsumura, Y. Detection of colorectal cancer cells from feces using quantitative real-time RT-PCR for colorectal cancer diagnosis. Cancer Sci., 2008, 99(10), 1977-1983.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00954.x] [PMID: 19016757]
[11]
Koga, Y.; Yasunaga, M.; Takahashi, A.; Kuroda, J.; Moriya, Y.; Akasu, T.; Fujita, S.; Yamamoto, S.; Baba, H.; Matsumura, Y. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev. Res. (Phila.), 2010, 3(11), 1435-1442.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0036] [PMID: 20959518]
[12]
Link, A.; Balaguer, F.; Shen, Y.; Nagasaka, T.; Lozano, J.J.; Boland, C.R.; Goel, A. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol. Biomarkers Prev., 2010, 19(7), 1766-1774.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0027] [PMID: 20551304]
[13]
Wang, J.Y.; Wu, C.H.; Lu, C.Y.; Hsieh, J.S.; Wu, D.C.; Huang, S.Y.; Lin, S.R. Molecular detection of circulating tumor cells in the peripheral blood of patients with colorectal cancer using RT-PCR: significance of the prediction of postoperative metastasis. World J. Surg., 2006, 30(6), 1007-1013.
[http://dx.doi.org/10.1007/s00268-005-0485-z] [PMID: 16736329]
[14]
Shen, C.; Hu, L.; Xia, L.; Li, Y. Quantitative real-time RT-PCR detection for survivin, CK20 and CEA in peripheral blood of colorectal cancer patients. Jpn. J. Clin. Oncol., 2008, 38(11), 770-776.
[http://dx.doi.org/10.1093/jjco/hyn105] [PMID: 18845519]
[15]
Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer, 2010, 127(1), 118-126.
[http://dx.doi.org/10.1002/ijc.25007] [PMID: 19876917]
[16]
Gold, P.; Freedman, S.O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J. Exp. Med., 1965, 121, 439-462.
[http://dx.doi.org/10.1084/jem.121.3.439] [PMID: 14270243]
[17]
Labianca, R.; Nordlinger, B.; Beretta, G.D.; Brouquet, A.; Cervantes, A.; Group, E.G.W. ESMO Guidelines Working Group. Primary colon cancer: ESMO Clinical Practice Guidelines for diagnosis, adjuvant treatment and follow-up. Ann. Oncol., 2010, 21(Suppl. 5), v70-v77.
[http://dx.doi.org/10.1093/annonc/mdq168] [PMID: 20555107]
[18]
Locker, G.Y.; Hamilton, S.; Harris, J.; Jessup, J.M.; Kemeny, N.; Macdonald, J.S.; Somerfield, M.R.; Hayes, D.F.; Bast, R.C. Jr ASCO. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol., 2006, 24(33), 5313-5327.
[http://dx.doi.org/10.1200/JCO.2006.08.2644] [PMID: 17060676]
[19]
Duffy, M.J.; Lamerz, R.; Haglund, C.; Nicolini, A.; Kalousová, M.; Holubec, L.; Sturgeon, C. Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int. J. Cancer, 2014, 134(11), 2513-2522.
[http://dx.doi.org/10.1002/ijc.28384] [PMID: 23852704]
[20]
Chen, C.C.; Yang, S.H.; Lin, J.K.; Lin, T.C.; Chen, W.S.; Jiang, J.K.; Wang, H.S.; Chang, S.C. Is it reasonable to add preoperative serum level of CEA and CA19-9 to staging for colorectal cancer? J. Surg. Res., 2005, 124(2), 169-174.
[http://dx.doi.org/10.1016/j.jss.2004.08.013] [PMID: 15820244]
[21]
Weissenberger, C.; Von Plehn, G.; Otto, F.; Barke, A.; Momm, F.; Geissler, M. Adjuvant radiochemotherapy of stage II and III rectal adenocarcinoma: role of CEA and CA 19-9. Anticancer Res., 2005, 25(3A), 1787-1793.
[PMID: 16033101]
[22]
Goldstein, M.J.; Mitchell, E.P. Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer. Cancer Invest., 2005, 23(4), 338-351.
[http://dx.doi.org/10.1081/CNV-58878] [PMID: 16100946]
[23]
Carpelan-Holmström, M.; Louhimo, J.; Stenman, U.H.; Alfthan, H.; Järvinen, H.; Haglund, C. CEA, CA 242, CA 19-9, CA 72-4 and hCGbeta in the diagnosis of recurrent colorectal cancer. Tumour Biol., 2004, 25(5-6), 228-234.
[http://dx.doi.org/10.1159/000081385] [PMID: 15627885]
[24]
Lumachi, F.; Marino, F.; Orlando, R.; Chiara, G.B.; Basso, S.M. Simultaneous multianalyte immunoassay measurement of five serum tumor markers in the detection of colorectal cancer. Anticancer Res., 2012, 32(3), 985-988.
[PMID: 22399621]
[25]
Levy, M.; Visokai, V.; Lipska, L.; Topolcan, O. Tumor markers in staging and prognosis of colorectal carcinoma. Neoplasma, 2008, 55(2), 138-142.
[PMID: 18237252]
[26]
Chen, C.; Chen, L.Q.; Yang, G.L.; Li, Y. Value of tumor markers in diagnosing and monitoring colorectal cancer and strategies for further improvement: analysis of 130 cases. Chin. J. Cancer, 2007, 26(11), 1221-1226.
[PMID: 17991322]
[27]
Zhao, X.W.; Jiang, B.; Han, C.Z.; Jing, J.X. [Detection and clinical study of serum tumor markers in patients with colorectal cancer Zhonghua Zhong Liu Za Zhi, 2005, 27(5), 286-288.
[PMID: 15996321]
[28]
Koss, K.; Maxton, D.; Jankowski, J.A. Faecal dimeric M2 pyruvate kinase in colorectal cancer and polyps correlates with tumour staging and surgical intervention. Colorectal Dis., 2008, 10(3), 244-248.
[http://dx.doi.org/10.1111/j.1463-1318.2007.01334.x] [PMID: 17784868]
[29]
Mulder, S.A.; van Leerdam, M.E.; van Vuuren, A.J.; Francke, J.; van Toorenenbergen, A.W.; Kuipers, E.J.; Ouwendijk, R.J. Tumor pyruvate kinase isoenzyme type M2 and immunochemical fecal occult blood test: performance in screening for colorectal cancer. Eur. J. Gastroenterol. Hepatol., 2007, 19(10), 878-882.
[http://dx.doi.org/10.1097/MEG.0b013e3282cfa49c] [PMID: 17873612]
[30]
Nielsen, H.J.; Brünner, N.; Jorgensen, L.N.; Olsen, J.; Rahr, H.B.; Thygesen, K.; Hoyer, U.; Laurberg, S.; Stieber, P.; Blankenstein, M.A.; Davis, G.; Dowell, B.L.; Christensen, I.J.; Danish, J. Danish Endoscopy Study Group on Colorectal Cancer Detection; Danish Colorectal Cancer Cooperative Group. Plasma TIMP-1 and CEA in detection of primary colorectal cancer: a prospective, population based study of 4509 high-risk individuals. Scand. J. Gastroenterol., 2011, 46(1), 60-69.
[http://dx.doi.org/10.3109/00365521.2010.513060] [PMID: 20799911]
[31]
Christensen, I.J.; Brünner, N.; Dowell, B.; Davis, G.; Nielsen, H.J.; Newstead, G.; King, D. Plasma TIMP-1 and CEA as markers for detection of primary colorectal cancer: A prospective validation study including symptomatic and non-symptomatic individuals. Anticancer Res., 2015, 35(9), 4935-4941.
[PMID: 26254391]
[32]
Nicolini, A.; Ferrari, P.; Duffy, M.J.; Antonelli, A.; Rossi, G.; Metelli, M.R.; Fulceri, F.; Anselmi, L.; Conte, M.; Berti, P.; Miccoli, P. Intensive risk-adjusted follow-up with the CEA, TPA, CA19.9, and CA72.4 tumor marker panel and abdominal ultrasonography to diagnose operable colorectal cancer recurrences: effect on survival. Arch. Surg., 2010, 145(12), 1177-1183.
[http://dx.doi.org/10.1001/archsurg.2010.251] [PMID: 21173292]
[33]
Byström, P.; Berglund, Å.; Nygren, P.; Wernroth, L.; Johansson, B.; Larsson, A.; Glimelius, B. Evaluation of predictive markers for patients with advanced colorectal cancer. Acta Oncol., 2012, 51(7), 849-859.
[http://dx.doi.org/10.3109/0284186X.2012.705020] [PMID: 22974092]
[34]
Sørensen, N.M.; Byström, P.; Christensen, I.J.; Berglund, A.; Nielsen, H.J.; Brünner, N.; Glimelius, B. TIMP-1 is significantly associated with objective response and survival in metastatic colorectal cancer patients receiving combination of irinotecan, 5-fluorouracil, and folinic acid. Clin. Cancer Res., 2007, 13(14), 4117-4122.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0186] [PMID: 17634538]
[35]
Uemura, N.; Yamada, Y. [FOLFIRI regimen for metastatic or recurrent colorectal cancer Gan To Kagaku Ryoho, 2006, 33(7), 904-906.
[PMID: 16835477]
[36]
Vermeulen, L.; Morrissey, E.; van der Heijden, M.; Nicholson, A.M.; Sottoriva, A.; Buczacki, S.; Kemp, R.; Tavaré, S.; Winton, D.J. Defining stem cell dynamics in models of intestinal tumor initiation. Science, 2013, 342(6161), 995-998.
[http://dx.doi.org/10.1126/science.1243148] [PMID: 24264992]
[37]
Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6, 479-507.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130235] [PMID: 21090969]
[38]
Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[39]
Miki, Y.; Nishisho, I.; Miyoshi, Y.; Utsunomiya, J.; Nakamura, Y. Interstitial loss of the same region of 5q in multiple adenomas and a carcinoma derived from an adenomatous polyposis coli (APC) patient. Genes Chromosomes Cancer, 1992, 4(1), 81-83.
[http://dx.doi.org/10.1002/gcc.2870040112] [PMID: 1377014]
[40]
Bodmer, W.F.; Cottrell, S.; Frischauf, A.M.; Kerr, I.B.; Murday, V.A.; Rowan, A.J.; Smith, M.F.; Solomon, E.; Thomas, H.; Varesco, L. Genetic analysis of colorectal cancer. Int. Symp. Princess Takamatsu Cancer Res. Fund, 1989, 20, 49-59.
[PMID: 2562187]
[41]
Ahnfelt-Rønne, I.; Nielsen, O.H.; Christensen, A.; Langholz, E.; Binder, V.; Riis, P. Clinical evidence supporting the radical scavenger mechanism of 5-aminosalicylic acid. Gastroenterology, 1990, 98(5 Pt 1), 1162-1169.
[http://dx.doi.org/10.1016/0016-5085(90)90329-Y] [PMID: 1969825]
[42]
Koelink, P.J.; Hawinkels, L.J.; Wiercinska, E.; Sier, C.F.; ten Dijke, P.; Lamers, C.B.; Hommes, D.W.; Verspaget, H.W. 5-Aminosalicylic acid inhibits TGF-beta1 signalling in colorectal cancer cells. Cancer Lett., 2010, 287(1), 82-90.
[http://dx.doi.org/10.1016/j.canlet.2009.05.033] [PMID: 19541409]
[43]
Kaiser, G.C.; Yan, F.; Polk, D.B. Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology, 1999, 116(3), 602-609.
[http://dx.doi.org/10.1016/S0016-5085(99)70182-4] [PMID: 10029619]
[44]
Reinacher-Schick, A.; Seidensticker, F.; Petrasch, S.; Reiser, M.; Philippou, S.; Theegarten, D.; Freitag, G.; Schmiegel, W. Mesalazine changes apoptosis and proliferation in normal mucosa of patients with sporadic polyps of the large bowel. Endoscopy, 2000, 32(3), 245-254.
[http://dx.doi.org/10.1055/s-2000-135] [PMID: 10718391]
[45]
Lyakhovich, A.; Michlmayr, A.; Bakulina, A.; Gerner, C.; Oehler, R.; Gasche, C. Interaction of mesalasine (5-ASA) with translational initiation factors eIF4 partially explains 5-ASA anti-inflammatory and anti-neoplastic activities. Med. Chem., 2011, 7(2), 92-98.
[http://dx.doi.org/10.2174/157340611794859325] [PMID: 21222616]
[46]
Luciani, M.G.; Campregher, C.; Fortune, J.M.; Kunkel, T.A.; Gasche, C. 5-ASA affects cell cycle progression in colorectal cells by reversibly activating a replication checkpoint. Gastroenterology, 2007, 132(1), 221-235.
[http://dx.doi.org/10.1053/j.gastro.2006.10.016] [PMID: 17241873]
[47]
Gasche, C.; Goel, A.; Natarajan, L.; Boland, C.R. Mesalazine improves replication fidelity in cultured colorectal cells. Cancer Res., 2005, 65(10), 3993-3997.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3824] [PMID: 15899787]
[48]
Campregher, C.; Honeder, C.; Chung, H.; Carethers, J.M.; Gasche, C. Mesalazine reduces mutations in transforming growth factor beta receptor II and activin type II receptor by improvement of replication fidelity in mononucleotide repeats. Clin. Cancer Res., 2010, 16(6), 1950-1956.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2854] [PMID: 20197483]
[49]
Khare, V.; Lang, M.; Dammann, K.; Campregher, C.; Lyakhovich, A.; Gasche, C. Modulation of N-glycosylation by mesalamine facilitates membranous E-cadherin expression in colon epithelial cells. Biochem. Pharmacol., 2014, 87(2), 312-320.
[http://dx.doi.org/10.1016/j.bcp.2013.10.021] [PMID: 24184502]
[50]
Hauso, Ø.; Martinsen, T.C.; Waldum, H. 5-Aminosalicylic acid, a specific drug for ulcerative colitis. Scand. J. Gastroenterol., 2015, 50(8), 933-941.
[http://dx.doi.org/10.3109/00365521.2015.1018937] [PMID: 25733192]
[51]
Qiu, X.; Ma, J.; Wang, K.; Zhang, H. Chemopreventive effects of 5-aminosalicylic acid on inflammatory bowel disease-associated colorectal cancer and dysplasia: a systematic review with meta-analysis. Oncotarget, 2017, 8(1), 1031-1045.
[http://dx.doi.org/10.18632/oncotarget.13715] [PMID: 27906680]
[52]
Tiede, I.; Fritz, G.; Strand, S.; Poppe, D.; Dvorsky, R.; Strand, D.; Lehr, H.A.; Wirtz, S.; Becker, C.; Atreya, R.; Mudter, J.; Hildner, K.; Bartsch, B.; Holtmann, M.; Blumberg, R.; Walczak, H.; Iven, H.; Galle, P.R.; Ahmadian, M.R.; Neurath, M.F. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J. Clin. Invest., 2003, 111(8), 1133-1145.
[http://dx.doi.org/10.1172/JCI16432] [PMID: 12697733]
[53]
Marinković, G.; Kroon, J.; Hoogenboezem, M.; Hoeben, K.A.; Ruiter, M.S.; Kurakula, K.; Otermin Rubio, I.; Vos, M.; de Vries, C.J.; van Buul, J.D.; de Waard, V. Inhibition of GTPase Rac1 in endothelium by 6-mercaptopurine results in immunosuppression in nonimmune cells: new target for an old drug. J. Immunol., 2014, 192(9), 4370-4378.
[http://dx.doi.org/10.4049/jimmunol.1302527] [PMID: 24670805]
[54]
Lv, R.; Qiao, W.; Wu, Z.; Wang, Y.; Dai, S.; Liu, Q.; Zheng, X. Tumor necrosis factor alpha blocking agents as treatment for ulcerative colitis intolerant or refractory to conventional medical therapy: a meta-analysis. PLoS One, 2014, 9(1)e86692
[http://dx.doi.org/10.1371/journal.pone.0086692] [PMID: 24475168]
[55]
Caspersen, S.; Elkjaer, M.; Riis, L.; Pedersen, N.; Mortensen, C.; Jess, T.; Sarto, P.; Hansen, T.S.; Wewer, V.; Bendtsen, F.; Moesgaard, F.; Munkholm, P. Danish Crohn Colitis Database. Infliximab for inflammatory bowel disease in Denmark 1999-2005: clinical outcome and follow-up evaluation of malignancy and mortality. Clin. Gastroenterol. Hepatol., 2008, 6(11), 1212-1217.
[http://dx.doi.org/10.1016/j.cgh.2008.05.010] [PMID: 18848503]
[56]
Vinnakota, K.; Zhang, Y.; Selvanesan, B.C.; Topi, G.; Salim, T.; Sand-Dejmek, J.; Jönsson, G.; Sjölander, A. M2-like macrophages induce colon cancer cell invasion via matrix metalloproteinases. J. Cell. Physiol., 2017, 232(12), 3468-3480.
[http://dx.doi.org/10.1002/jcp.25808] [PMID: 28098359]
[57]
Ghanghas, P.; Jain, S.; Rana, C.; Sanyal, S.N. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. Biomed. Pharmacother., 2016, 78, 239-247.
[http://dx.doi.org/10.1016/j.biopha.2016.01.024] [PMID: 26898448]
[58]
Kaur, J.; Sanyal, S.N. Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF. Mol. Carcinog., 2011, 50(9), 707-718.
[http://dx.doi.org/10.1002/mc.20736] [PMID: 21268133]
[59]
Saini, M.K.; Sanyal, S.N. Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem. Cell Biol., 2014, 92(3), 206-218.
[http://dx.doi.org/10.1139/bcb-2014-0016] [PMID: 24861078]
[60]
Irving, G.R.; Karmokar, A.; Berry, D.P.; Brown, K.; Steward, W.P. Curcumin: the potential for efficacy in gastrointestinal diseases. Best Pract. Res. Clin. Gastroenterol., 2011, 25(4-5), 519-534.
[http://dx.doi.org/10.1016/j.bpg.2011.09.005] [PMID: 22122768]
[61]
Schaffer, M.; Schaffer, P.M.; Bar-Sela, G. An update on Curcuma as a functional food in the control of cancer and inflammation. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(6), 605-611.
[http://dx.doi.org/10.1097/MCO.0000000000000227] [PMID: 26418821]
[62]
Hull, M.A. Omega-3 polyunsaturated fatty acids. Best Pract. Res. Clin. Gastroenterol., 2011, 25(4-5), 547-554.
[http://dx.doi.org/10.1016/j.bpg.2011.08.001] [PMID: 22122770]
[63]
Hull, M.A.; Sandell, A.C.; Montgomery, A.A.; Logan, R.F.; Clifford, G.M.; Rees, C.J.; Loadman, P.M.; Whitham, D. A randomized controlled trial of eicosapentaenoic acid and/or aspirin for colorectal adenoma prevention during colonoscopic surveillance in the NHS Bowel Cancer Screening Programme (The seAFOod Polyp Prevention Trial): study protocol for a randomized controlled trial. Trials, 2013, 14, 237-247.
[http://dx.doi.org/10.1186/1745-6215-14-237] [PMID: 23895505]
[64]
West, N.J.; Clark, S.K.; Phillips, R.K.; Hutchinson, J.M.; Leicester, R.J.; Belluzzi, A.; Hull, M.A. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut, 2010, 59(7), 918-925.
[http://dx.doi.org/10.1136/gut.2009.200642] [PMID: 20348368]
[65]
DeCosse, J.J.; Adams, M.B.; Kuzma, J.F.; LoGerfo, P.; Condon, R.E. Effect of ascorbic acid on rectal polyps of patients with familial polyposis. Surgery, 1975, 78(5), 608-612.
[PMID: 1188603]
[66]
DeCosse, J.J.; Miller, H.H.; Lesser, M.L. Effect of wheat fiber and vitamins C and E on rectal polyps in patients with familial adenomatous polyposis. J. Natl. Cancer Inst., 1989, 81(17), 1290-1297.
[http://dx.doi.org/10.1093/jnci/81.17.1290] [PMID: 2549261]
[67]
Thomas, M.G.; Thomson, J.P.; Williamson, R.C. Oral calcium inhibits rectal epithelial proliferation in familial adenomatous polyposis. Br. J. Surg., 1993, 80(4), 499-501.
[http://dx.doi.org/10.1002/bjs.1800800432] [PMID: 8388307]
[68]
Lashner, B.A.; Provencher, K.S.; Seidner, D.L.; Knesebeck, A.; Brzezinski, A. The effect of folic acid supplementation on the risk for cancer or dysplasia in ulcerative colitis. Gastroenterology, 1997, 112(1), 29-32.
[http://dx.doi.org/10.1016/S0016-5085(97)70215-4] [PMID: 8978339]
[69]
Arora, S.P.; Mahalingam, D. Immunotherapy in colorectal cancer: for the select few or all? J. Gastrointest. Oncol., 2018, 9(1), 170-179.
[http://dx.doi.org/10.21037/jgo.2017.06.10] [PMID: 29564183]
[70]
Whyte, S.; Pandor, A.; Stevenson, M.; Rees, A. Bevacizumab in combination with fluoropyrimidine-based chemotherapy for the first-line treatment of metastatic colorectal cancer. Health Technol. Assess., 2010, 14(Suppl. 2), 47-53.
[http://dx.doi.org/10.3310/hta14suppl2/07] [PMID: 21047491]
[71]
Heinemann, V.; Hoff, P.M. Bevacizumab plus irinotecan-based regimens in the treatment of metastatic colorectal cancer. Oncology, 2010, 79(1-2), 118-128.
[http://dx.doi.org/10.1159/000314993] [PMID: 21088438]
[72]
Peeters, M.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; Punt, C.J.; Strickland, A.H.; Wilson, G.; Ciuleanu, T.E.; Roman, L.; Van Cutsem, E.; Tzekova, V.; Collins, S.; Oliner, K.S.; Rong, A.; Gansert, J. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol., 2010, 28(31), 4706-4713.
[http://dx.doi.org/10.1200/JCO.2009.27.6055] [PMID: 20921462]
[73]
Lipson, E.J.; Sharfman, W.H.; Drake, C.G.; Wollner, I.; Taube, J.M.; Anders, R.A.; Xu, H.; Yao, S.; Pons, A.; Chen, L.; Pardoll, D.M.; Brahmer, J.R.; Topalian, S.L. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res., 2013, 19(2), 462-468.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2625] [PMID: 23169436]
[74]
Gandini, S.; Massi, D.; Mandalà, M. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2016, 100, 88-98.
[http://dx.doi.org/10.1016/j.critrevonc.2016.02.001] [PMID: 26895815]
[75]
Wang, X.; Teng, F.; Kong, L.; Yu, J. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther., 2016, 9, 5023-5039.
[http://dx.doi.org/10.2147/OTT.S105862] [PMID: 27574444]
[76]
Kalyan, A.; Kircher, S.; Shah, H.; Mulcahy, M.; Benson, A. Updates on immunotherapy for colorectal cancer. J. Gastrointest. Oncol., 2018, 9(1), 160-169.
[http://dx.doi.org/10.21037/jgo.2018.01.17] [PMID: 29564182]
[77]
Lynch, D.; Murphy, A. The emerging role of immunotherapy in colorectal cancer. Ann. Transl. Med., 2016, 4(16), 305-315.
[http://dx.doi.org/10.21037/atm.2016.08.29] [PMID: 27668225]
[78]
Bartnik, A.; Nirmal, A.J.; Yang, S.Y. Peptide vaccine therapy in colorectal cancer. Vaccines (Basel), 2012, 1(1), 1-16.
[http://dx.doi.org/10.3390/vaccines1010001] [PMID: 26343847]
[79]
Klebanoff, C.A.; Acquavella, N.; Yu, Z.; Restifo, N.P. Therapeutic cancer vaccines: are we there yet? Immunol. Rev., 2011, 239(1), 27-44.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00979.x] [PMID: 21198663]
[80]
Xiang, B.; Snook, A.E.; Magee, M.S.; Waldman, S.A. Colorectal cancer immunotherapy. Discov. Med., 2013, 15(84), 301-308.
[PMID: 23725603]
[81]
Cho, J.A.; Lee, Y.S.; Kim, S.H.; Ko, J.K.; Kim, C.W. MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generate tumor regression in murine models. Cancer Lett., 2009, 275(2), 256-265.
[http://dx.doi.org/10.1016/j.canlet.2008.10.021] [PMID: 19036499]
[82]
Klein, H.O.; Golbach, G.; Voigt, P.; Coerper, C.; Bernhardt, C. Combination of interferons and cytostatic drugs for treatment of advanced colorectal cancer. J. Cancer Res. Clin. Oncol., 1991, 117(Suppl. 4), S214-S220.
[http://dx.doi.org/10.1007/BF01613230] [PMID: 1795010]
[83]
Teufel, A.; Steinmann, S.; Siebler, J.; Zanke, C.; Hohl, H.; Adami, B.; Schroeder, M.; Klein, O.; Höhler, T.; Galle, P.R.; Heike, M.; Moehler, M. Irinotecan plus folinic acid/continuous 5-fluorouracil as simplified bimonthly FOLFIRI regimen for first-line therapy of metastatic colorectal cancer. BMC Cancer, 2004, 4, 38-39.
[http://dx.doi.org/10.1186/1471-2407-4-38] [PMID: 15265233]
[84]
Carracedo, A.; Pandolfi, P.P. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene, 2008, 27(41), 5527-5541.
[http://dx.doi.org/10.1038/onc.2008.247] [PMID: 18794886]
[85]
Faber, A.C.; Li, D.; Song, Y.; Liang, M.C.; Yeap, B.Y.; Bronson, R.T.; Lifshits, E.; Chen, Z.; Maira, S.M.; García-Echeverría, C.; Wong, K.K.; Engelman, J.A. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc. Natl. Acad. Sci. USA, 2009, 106(46), 19503-19508.
[http://dx.doi.org/10.1073/pnas.0905056106] [PMID: 19850869]
[86]
Bahrami, A.; Khazaei, M.; Hasanzadeh, M. ShahidSales, S.; Joudi Mashhad, M.; Farazestanian, M.; Sadeghnia, H.R.; Rezayi, M.; Maftouh, M.; Hassanian, S.M.; Avan, A. Therapeutic potential of targeting PI3K/AKT pathway in treatment of colorectal cancer: Rational and Progress. J. Cell. Biochem., 2018, 119(3), 2460-2469.
[http://dx.doi.org/10.1002/jcb.25950] [PMID: 28230287]
[87]
Martinelli, E.; Troiani, T.; D’Aiuto, E.; Morgillo, F.; Vitagliano, D.; Capasso, A.; Costantino, S.; Ciuffreda, L.P.; Merolla, F.; Vecchione, L.; De Vriendt, V.; Tejpar, S.; Nappi, A.; Sforza, V.; Martini, G.; Berrino, L.; De Palma, R.; Ciardiello, F. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells. Int. J. Cancer, 2013, 133(9), 2089-2101.
[http://dx.doi.org/10.1002/ijc.28236] [PMID: 23629727]
[88]
Migliardi, G.; Sassi, F.; Torti, D.; Galimi, F.; Zanella, E.R.; Buscarino, M.; Ribero, D.; Muratore, A.; Massucco, P.; Pisacane, A.; Risio, M.; Capussotti, L.; Marsoni, S.; Di Nicolantonio, F.; Bardelli, A.; Comoglio, P.M.; Trusolino, L.; Bertotti, A. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin. Cancer Res., 2012, 18(9), 2515-2525.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2683] [PMID: 22392911]
[89]
Li, T.; Zhao, N.; Lu, J.; Zhu, Q.; Liu, X.; Hao, F.; Jiao, X. Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways. Bioengineered, 2019, 10(1), 282-291.
[http://dx.doi.org/10.1080/21655979.2019.1632669] [PMID: 31311401]
[90]
El-Kayal, M.; Nasr, M.; Elkheshen, S.; Mortada, N. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation. Eur. J. Pharm. Sci., 2019.137104972
[http://dx.doi.org/10.1016/j.ejps.2019.104972] [PMID: 31252049]
[91]
Abed, Z.; Beik, J.; Laurent, S.; Eslahi, N.; Khani, T.; Davani, E.S.; Ghaznavi, H.; Shakeri-Zadeh, A. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J. Cancer Res. Clin. Oncol., 2019, 145(5), 1213-1219.
[http://dx.doi.org/10.1007/s00432-019-02870-x] [PMID: 30847551]
[92]
Pavitra, E.; Dariya, B.; Srivani, G.; Kang, S.M.; Alam, A.; Sudhir, P.R.; Kamal, M.A.; Raju, G.S.R.; Han, Y.K.; Lakkakula, B.V.K.S.; Nagaraju, G.P.; Huh, Y.S. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin. Cancer Biol., 2019, 19, 30124-30125.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.017] [PMID: 31260733]
[93]
Farokhzad, O.C.; Cheng, J.; Teply, B.A.; Sherifi, I.; Jon, S.; Kantoff, P.W.; Richie, J.P.; Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6315-6320.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[94]
Gu, F.; Langer, R.; Farokhzad, O.C. Formulation/preparation of functionalized nanoparticles for in vivo targeted drug delivery. Methods Mol. Biol., 2009, 544, 589-598.
[http://dx.doi.org/10.1007/978-1-59745-483-4_37] [PMID: 19488725]
[95]
Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 2010, (197), 55-86.
[http://dx.doi.org/10.1007/978-3-642-00477-3_2] [PMID: 20217526]
[96]
Thaxton, C.S.; Elghanian, R.; Thomas, A.D.; Stoeva, S.I.; Lee, J.S.; Smith, N.D.; Schaeffer, A.J.; Klocker, H.; Horninger, W.; Bartsch, G.; Mirkin, C.A. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. USA, 2009, 106(44), 18437-18442.
[http://dx.doi.org/10.1073/pnas.0904719106] [PMID: 19841273]
[97]
Kirui, D.K.; Khalidov, I.; Wang, Y.; Batt, C.A. Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. Nanomedicine (Lond.), 2013, 9(5), 702-711.
[http://dx.doi.org/10.1016/j.nano.2012.11.009] [PMID: 23219875]
[98]
Lee, C.M.; Jeong, H.J.; Cheong, S.J.; Kim, E.M.; Kim, D.W.; Lim, S.T.; Sohn, M.H. Prostate cancer-targeted imaging using magnetofluorescent polymeric nanoparticles functionalized with bombesin. Pharm. Res., 2010, 27(4), 712-721.
[http://dx.doi.org/10.1007/s11095-010-0072-3] [PMID: 20182773]
[99]
Gindy, M.E.; Prud’homme, R.K. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin. Drug Deliv., 2009, 6(8), 865-878.
[http://dx.doi.org/10.1517/17425240902932908] [PMID: 19637974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy