Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators

Author(s): Khaled Alsayegh, Lorena V. Cortés-Medina, Gerardo Ramos-Mandujano, Heba Badraiq and Mo Li*

Volume 20, Issue 6, 2019

Page: [438 - 452] Pages: 15

DOI: 10.2174/1389202920666191017163837

open access plus

Open Access Journals Promotions 2
conference banner
Abstract

Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.

Keywords: Hematopoiesis, embryonic stem cell, induced pluripotent stem cell, differentiation, engraftment, HOX genes, GATA, transcription factors, microRNA, epigenetic regulation.

Graphical Abstract
Animated Abstract
[1]
Daniel, M.G.; Pereira, C.F.; Lemischka, I.R.; Moore, K.A. Making a hematopoietic stem cell. Trends Cell Biol., 2016, 26(3), 202-214.
[http://dx.doi.org/10.1016/j.tcb.2015.10.002] [PMID: 26526106]
[2]
Jagannathan-Bogdan, M.; Zon, L.I. Hematopoiesis. Development, 2013, 140(12), 2463-2467.
[http://dx.doi.org/10.1242/dev.083147] [PMID: 23715539]
[3]
Deans, C.; Maggert, K.A. What do you mean, “epigenetic”? Genetics, 2015, 199(4), 887-896.
[http://dx.doi.org/10.1534/genetics.114.173492] [PMID: 25855649]
[4]
Weinhold, B. Epigenetics: The science of change. Environ. Health Perspect., 2006, 114(3), A160-A167.
[http://dx.doi.org/10.1289/ehp.114-a160] [PMID: 16507447]
[5]
Campos-Sanchez, E.; Martínez-Cano, J.; Del Pino Molina, L.; López-Granados, E.; Cobaleda, C. Epigenetic deregulation in human primary immunodeficiencies. Trends Immunol., 2019, 40(1), 49-65.
[http://dx.doi.org/10.1016/j.it.2018.11.005] [PMID: 30509895]
[6]
Siena, S.; Schiavo, R.; Pedrazzoli, P.; Carlo-Stella, C. Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J. Clin. Oncol., 2000, 18(6), 1360-1377.
[http://dx.doi.org/10.1200/JCO.2000.18.6.1360] [PMID: 10715309]
[7]
Lim, W.F.; Inoue-Yokoo, T.; Tan, K.S.; Lai, M.I.; Sugiyama, D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res. Ther., 2013, 4(3), 71.
[PMID: 23796405]
[8]
Takizawa, H.; Schanz, U.; Manz, M.G. Ex vivo expansion of hematopoietic stem cells: Mission accomplished? Swiss Med. Wkly., 2011, 141w13316
[http://dx.doi.org/10.4414/smw.2011.13316] [PMID: 22252776]
[9]
Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391), 1145-1147.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
[10]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[11]
Yang, C.T.; Ma, R.; Axton, R.A.; Jackson, M.; Taylor, A.H.; Fidanza, A.; Marenah, L.; Frayne, J.; Mountford, J.C.; Forrester, L.M. Activation of KLF1 enhances the differentiation and maturation of red blood cells from human pluripotent stem cells. Stem Cells, 2017, 35(4), 886-897.
[http://dx.doi.org/10.1002/stem.2562] [PMID: 28026072]
[12]
Chivu-Economescu, M.; Rubach, M. Hematopoietic stem cells therapies. Curr. Stem Cell Res. Ther., 2017, 12(2), 124-133.
[http://dx.doi.org/10.2174/1574888X10666151026114241] [PMID: 26496888]
[13]
Liso, A.; Neri, M.; Maglietta, F.; La Russa, R.; Turillazzi, E. Hematopoietic stem cell transplantation: A bioethical lens. Stem Cells Int., 2017, 20171286246
[http://dx.doi.org/10.1155/2017/1286246] [PMID: 28740510]
[14]
Champlin, R. Now everyone has a donor for HSCT. Blood, 2011, 118(2), 218.
[http://dx.doi.org/10.1182/blood-2011-05-352518] [PMID: 21757626]
[15]
Guo, S.; Lu, J.; Schlanger, R.; Zhang, H.; Wang, J.Y.; Fox, M.C.; Purton, L.E.; Fleming, H.H.; Cobb, B.; Merkenschlager, M.; Golub, T.R.; Scadden, D.T. MicroRNA miR-125a controls hematopoietic stem cell number. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14229-14234.
[http://dx.doi.org/10.1073/pnas.0913574107] [PMID: 20616003]
[16]
Michallet, M.; Philip, T.; Philip, I.; Godinot, H.; Sebban, C.; Salles, G.; Thiebaut, A.; Biron, P.; Lopez, F.; Mazars, P.; Roubi, N.; Leemhuis, T.; Hanania, E.; Reading, C.; Fine, G.; Atkinson, K.; Juttner, C.; Coiffier, B.; Fière, D.; Archimbaud, E. Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: Impact of HSC dose on engraftment, safety, and immune reconstitution. Exp. Hematol., 2000, 28(7), 858-870.
[http://dx.doi.org/10.1016/S0301-472X(00)00169-7] [PMID: 10907648]
[17]
Daikeler, T.; Tichelli, A.; Passweg, J. Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune diseases. Pediatr. Res., 2012, 71(4 Pt 2), 439-444.
[http://dx.doi.org/10.1038/pr.2011.57] [PMID: 22430379]
[18]
Cioch, M.; Jawniak, D.; Wach, M.; Mańko, J.; Radomska, K.; Borowska, H.; Szczepanek, A.; Hus, M. Autologous hematopoietic stem cell transplantation for adults with acute myeloid leukemia. Transplant. Proc., 2016, 48(5), 1814-1817.
[http://dx.doi.org/10.1016/j.transproceed.2016.03.014] [PMID: 27496498]
[19]
Kim, A.R.; Sankaran, V.G. Development of autologous blood cell therapies. Exp. Hematol., 2016, 44(10), 887-894.
[http://dx.doi.org/10.1016/j.exphem.2016.06.005] [PMID: 27345108]
[20]
Watts, M.J.; Linch, D.C. Optimisation and quality control of cell processing for autologous stem cell transplantation. Br. J. Haematol., 2016, 175(5), 771-783.
[http://dx.doi.org/10.1111/bjh.14378] [PMID: 27748518]
[21]
King, N.M.; Perrin, J. Ethical issues in stem cell research and therapy. Stem Cell Res. Ther., 2014, 5(4), 85.
[http://dx.doi.org/10.1186/scrt474] [PMID: 25157428]
[22]
Ackermann, M.; Liebhaber, S.; Klusmann, J.H.; Lachmann, N. Lost in translation: Pluripotent stem cell-derived hematopoiesis. EMBO Mol. Med., 2015, 7(11), 1388-1402.
[http://dx.doi.org/10.15252/emmm.201505301] [PMID: 26174486]
[23]
Ledran, M.H.; Krassowska, A.; Armstrong, L.; Dimmick, I.; Renström, J.; Lang, R.; Yung, S.; Santibanez-Coref, M.; Dzierzak, E.; Stojkovic, M.; Oostendorp, R.A.; Forrester, L.; Lako, M. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell, 2008, 3(1), 85-98.
[http://dx.doi.org/10.1016/j.stem.2008.06.001] [PMID: 18593561]
[24]
Slukvin, I.I.; Vodyanik, M.A.; Thomson, J.A.; Gumenyuk, M.E.; Choi, K.D. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J. Immunol., 2006, 176(5), 2924-2932.
[http://dx.doi.org/10.4049/jimmunol.176.5.2924] [PMID: 16493050]
[25]
Vodyanik, M.A.; Thomson, J.A.; Slukvin, I.I. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood, 2006, 108(6), 2095-2105.
[http://dx.doi.org/10.1182/blood-2006-02-003327] [PMID: 16757688]
[26]
Kumar, A.; Lee, J.H.; Suknuntha, K.; D’Souza, S.S.; Thakur, A.S.; Slukvin, I.I. NOTCH activation at the hematovascular mesoderm stage facilitates efficient generation of T cells with high proliferation potential from human pluripotent stem cells. J. Immunol., 2019, 202(3), 770-776.
[http://dx.doi.org/10.4049/jimmunol.1801027] [PMID: 30578305]
[27]
Timmermans, F.; Velghe, I.; Vanwalleghem, L.; De Smedt, M.; Van Coppernolle, S.; Taghon, T.; Moore, H.D.; Leclercq, G.; Langerak, A.W.; Kerre, T.; Plum, J.; Vandekerckhove, B. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J. Immunol., 2009, 182(11), 6879-6888.
[http://dx.doi.org/10.4049/jimmunol.0803670] [PMID: 19454684]
[28]
French, A.; Yang, C.T.; Taylor, S.; Watt, S.M.; Carpenter, L. Human induced pluripotent stem cell-derived B lymphocytes express sIgM and can be generated via a hemogenic endothelium intermediate. Stem Cells Dev., 2015, 24(9), 1082-1095.
[http://dx.doi.org/10.1089/scd.2014.0318] [PMID: 25519920]
[29]
Takayama, N.; Nishikii, H.; Usui, J.; Tsukui, H.; Sawaguchi, A.; Hiroyama, T.; Eto, K.; Nakauchi, H. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood, 2008, 111(11), 5298-5306.
[http://dx.doi.org/10.1182/blood-2007-10-117622] [PMID: 18388179]
[30]
Sturgeon, C.M.; Ditadi, A.; Awong, G.; Kennedy, M.; Keller, G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol., 2014, 32(6), 554-561.
[http://dx.doi.org/10.1038/nbt.2915] [PMID: 24837661]
[31]
Kennedy, M.; Awong, G.; Sturgeon, C.M.; Ditadi, A.; LaMotte-Mohs, R.; Zúñiga-Pflücker, J.C.; Keller, G. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep., 2012, 2(6), 1722-1735.
[http://dx.doi.org/10.1016/j.celrep.2012.11.003] [PMID: 23219550]
[32]
Doulatov, S.; Vo, L.T.; Chou, S.S.; Kim, P.G.; Arora, N.; Li, H.; Hadland, B.K.; Bernstein, I.D.; Collins, J.J.; Zon, L.I.; Daley, G.Q. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell, 2013, 13(4), 459-470.
[http://dx.doi.org/10.1016/j.stem.2013.09.002] [PMID: 24094326]
[33]
Elcheva, I.; Brok-Volchanskaya, V.; Kumar, A.; Liu, P.; Lee, J.H.; Tong, L.; Vodyanik, M.; Swanson, S.; Stewart, R.; Kyba, M.; Yakubov, E.; Cooke, J.; Thomson, J.A.; Slukvin, I. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nat. Commun., 2014, 5, 4372.
[http://dx.doi.org/10.1038/ncomms5372] [PMID: 25019369]
[34]
Ran, D.; Shia, W.J.; Lo, M.C.; Fan, J.B.; Knorr, D.A.; Ferrell, P.I.; Ye, Z.; Yan, M.; Cheng, L.; Kaufman, D.S.; Zhang, D.E. RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood, 2013, 121(15), 2882-2890.
[http://dx.doi.org/10.1182/blood-2012-08-451641] [PMID: 23372166]
[35]
Real, P.J.; Ligero, G.; Ayllon, V.; Ramos-Mejia, V.; Bueno, C.; Gutierrez-Aranda, I.; Navarro-Montero, O.; Lako, M.; Menendez, P. SCL/TAL1 regulates hematopoietic specification from human embryonic stem cells. Mol. Ther., 2012, 20(7), 1443-1453.
[http://dx.doi.org/10.1038/mt.2012.49] [PMID: 22491213]
[36]
Sugimura, R.; Jha, D.K.; Han, A.; Soria-Valles, C.; da Rocha, E.L.; Lu, Y.F.; Goettel, J.A.; Serrao, E.; Rowe, R.G.; Malleshaiah, M.; Wong, I.; Sousa, P.; Zhu, T.N.; Ditadi, A.; Keller, G.; Engelman, A.N.; Snapper, S.B.; Doulatov, S.; Daley, G.Q. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature, 2017, 545(7655), 432-438.
[http://dx.doi.org/10.1038/nature22370] [PMID: 28514439]
[37]
Sandler, V.M.; Lis, R.; Liu, Y.; Kedem, A.; James, D.; Elemento, O.; Butler, J.M.; Scandura, J.M.; Rafii, S. Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 2014, 511(7509), 312-318.
[http://dx.doi.org/10.1038/nature13547] [PMID: 25030167]
[38]
Lis, R.; Karrasch, C.C.; Poulos, M.G.; Kunar, B.; Redmond, D.; Duran, J.G.B.; Badwe, C.R.; Schachterle, W.; Ginsberg, M.; Xiang, J.; Tabrizi, A.R.; Shido, K.; Rosenwaks, Z.; Elemento, O.; Speck, N.A.; Butler, J.M.; Scandura, J.M.; Rafii, S. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature, 2017, 545(7655), 439-445.
[http://dx.doi.org/10.1038/nature22326] [PMID: 28514438]
[39]
Huang, Y.; Sitwala, K.; Bronstein, J.; Sanders, D.; Dandekar, M.; Collins, C.; Robertson, G.; MacDonald, J.; Cezard, T.; Bilenky, M.; Thiessen, N.; Zhao, Y.; Zeng, T.; Hirst, M.; Hero, A.; Jones, S.; Hess, J.L. Identification and characterization of Hoxa9 binding sites in hematopoietic cells. Blood, 2012, 119(2), 388-398.
[http://dx.doi.org/10.1182/blood-2011-03-341081] [PMID: 22072553]
[40]
Lawrence, H.J.; Christensen, J.; Fong, S.; Hu, Y.L.; Weissman, I.; Sauvageau, G.; Humphries, R.K.; Largman, C. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood, 2005, 106(12), 3988-3994.
[http://dx.doi.org/10.1182/blood-2005-05-2003] [PMID: 16091451]
[41]
Weerkamp, F.; Luis, T.C.; Naber, B.A.; Koster, E.E.; Jeannotte, L.; van Dongen, J.J.; Staal, F.J. Identification of Notch target genes in uncommitted T-cell progenitors: No direct induction of a T-cell specific gene program. Leukemia, 2006, 20(11), 1967-1977.
[http://dx.doi.org/10.1038/sj.leu.2404396] [PMID: 16990763]
[42]
Li, M.; Belmonte, J.C. Ground rules of the pluripotency gene regulatory network. Nat. Rev. Genet., 2017, 18(3), 180-191.
[http://dx.doi.org/10.1038/nrg.2016.156] [PMID: 28045100]
[43]
Li, M.; Liu, G.H.; Izpisua Belmonte, J.C. Navigating the epigenetic landscape of pluripotent stem cells. Nat. Rev. Mol. Cell Biol., 2012, 13(8), 524-535.
[http://dx.doi.org/10.1038/nrm3393] [PMID: 22820889]
[44]
Argiropoulos, B.; Humphries, R.K. Hox genes in hematopoiesis and leukemogenesis. Oncogene, 2007, 26(47), 6766-6776.
[http://dx.doi.org/10.1038/sj.onc.1210760] [PMID: 17934484]
[45]
Bresnick, E.H.; Katsumura, K.R.; Lee, H.Y.; Johnson, K.D.; Perkins, A.S. Master regulatory GATA transcription factors: Mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res., 2012, 40(13), 5819-5831.
[http://dx.doi.org/10.1093/nar/gks281] [PMID: 22492510]
[46]
Bowles, K.M.; Vallier, L.; Smith, J.R.; Alexander, M.R.; Pedersen, R.A. HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells, 2006, 24(5), 1359-1369.
[http://dx.doi.org/10.1634/stemcells.2005-0210] [PMID: 16410392]
[47]
Jackson, M.; Ma, R.; Taylor, A.H.; Axton, R.A.; Easterbrook, J.; Kydonaki, M.; Olivier, E.; Marenah, L.; Stanley, E.G.; Elefanty, A.G.; Mountford, J.C.; Forrester, L.M. Enforced expression of hoxb4 in human embryonic stem cells enhances the production of hematopoietic progenitors but has no effect on the maturation of red blood cells. Stem Cells Transl. Med., 2016, 5(8), 981-990.
[http://dx.doi.org/10.5966/sctm.2015-0324] [PMID: 27352929]
[48]
Amabile, G.; Welner, R.S.; Nombela-Arrieta, C.; D’Alise, A.M.; Di Ruscio, A.; Ebralidze, A.K.; Kraytsberg, Y.; Ye, M.; Kocher, O.; Neuberg, D.S.; Khrapko, K.; Silberstein, L.E.; Tenen, D.G. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood, 2013, 121(8), 1255-1264.
[http://dx.doi.org/10.1182/blood-2012-06-434407] [PMID: 23212524]
[49]
Toscano, M.G.; Navarro-Montero, O.; Ayllon, V.; Ramos-Mejia, V.; Guerrero-Carreno, X.; Bueno, C.; Romero, T.; Lamolda, M.; Cobo, M.; Martin, F.; Menendez, P.; Real, P.J. SCL/TAL1-mediated transcriptional network enhances megakaryocytic specification of human embryonic stem cells. Mol. Ther., 2015, 23(1), 158-170.
[http://dx.doi.org/10.1038/mt.2014.196] [PMID: 25292191]
[50]
Dalby, A.; Ballester-Beltrán, J.; Lincetto, C.; Mueller, A.; Foad, N.; Evans, A.; Baye, J.; Turro, E.; Moreau, T.; Tijssen, M.R.; Ghevaert, C. Transcription factor levels after forward programming of human pluripotent stem cells with GATA1, FLI1, and TAL1 determine megakaryocyte versus erythroid cell fate decision. Stem Cell Reports, 2018, 11(6), 1462-1478.
[http://dx.doi.org/10.1016/j.stemcr.2018.11.001] [PMID: 30503262]
[51]
Amélie. Montel-Hagen, C.S.S.; Li, Suwen, S.L.; Brent, C.; Yuhua, Z.; Patrick, C.; Steven, T.; Victoria, S.; Shawn, L.; Ho-Chung, C.; Chongbin, H.; Chee, J.C.; David, C.; Gay, M.C. Organoid-induced differentiation of conventional T cells from human pluripotent stem cells. Cell Stem Cell, 2019.
[52]
Tan, Y.T.; Ye, L.; Xie, F.; Beyer, A.I.; Muench, M.O.; Wang, J.; Chen, Z.; Liu, H.; Chen, S.J.; Kan, Y.W. Respecifying human iPSC-derived blood cells into highly engraftable hematopoietic stem and progenitor cells with a single factor. Proc. Natl. Acad. Sci. USA, 2018, 115(9), 2180-2185.
[http://dx.doi.org/10.1073/pnas.1718446115] [PMID: 29386396]
[53]
Saxena, S. Efficient production of human hematopoietic cells from pluripotent stem cells through cAMP induction., 2017.
[http://dx.doi.org/10.1038/protex.2017.012]
[54]
Sweeney, C.L.; Teng, R.; Wang, H.; Merling, R.K.; Lee, J.; Choi, U.; Koontz, S.; Wright, D.G.; Malech, H.L. Molecular analysis of neutrophil differentiation from human induced pluripotent stem cells delineates the kinetics of key regulators of hematopoiesis. Stem Cells, 2016, 34(6), 1513-1526.
[http://dx.doi.org/10.1002/stem.2332] [PMID: 26866427]
[55]
Espinoza, J.L.; Elbadry, M.I.; Chonabayashi, K.; Yoshida, Y.; Katagiri, T.; Harada, K.; Nakagawa, N.; Zaimoku, Y.; Imi, T.; Takamatsu, H.; Ozawa, T.; Maruyama, H.; Hassanein, H.A.; Khalifa A Noreldin, A.; Takenaka, K.; Akashi, K.; Hamana, H.; Kishi, H.; Akatsuka, Y.; Nakao, S. Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. Blood Adv., 2018, 2(4), 390-400.
[http://dx.doi.org/10.1182/bloodadvances.2017013342] [PMID: 29472446]
[56]
Collins, E.M.; Thompson, A. HOX genes in normal, engineered and malignant hematopoiesis. Int. J. Dev. Biol., 2018, 62(11-12), 847-856.
[http://dx.doi.org/10.1387/ijdb.180206at] [PMID: 30604854]
[57]
Chanda, B.; Ditadi, A.; Iscove, N.N.; Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell, 2013, 155(1), 215-227.
[http://dx.doi.org/10.1016/j.cell.2013.08.055] [PMID: 24074870]
[58]
Cabezas-Wallscheid, N. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell, 2017, 169(5), 807.
[59]
Kashyap, V.; Gudas, L.J.; Brenet, F.; Funk, P.; Viale, A.; Scandura, J.M. Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J. Biol. Chem., 2011, 286(5), 3250-3260.
[http://dx.doi.org/10.1074/jbc.M110.157545] [PMID: 21087926]
[60]
Kyba, M.; Perlingeiro, R.C.; Daley, G.Q. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell, 2002, 109(1), 29-37.
[http://dx.doi.org/10.1016/S0092-8674(02)00680-3] [PMID: 11955444]
[61]
Wang, L.; Menendez, P.; Shojaei, F.; Li, L.; Mazurier, F.; Dick, J.E.; Cerdan, C.; Levac, K.; Bhatia, M. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J. Exp. Med., 2005, 201(10), 1603-1614.
[http://dx.doi.org/10.1084/jem.20041888] [PMID: 15883170]
[62]
Schiedlmeier, B.; Santos, A.C.; Ribeiro, A.; Moncaut, N.; Lesinski, D.; Auer, H.; Kornacker, K.; Ostertag, W.; Baum, C.; Mallo, M.; Klump, H. HOXB4's road map to stem cell expansion. Proc. Natl. Acad. Sci. USA, 2007, 104(43), 16952-16957.
[http://dx.doi.org/10.1073/pnas.0703082104] [PMID: 17940039]
[63]
Forrester, L.M.; Jackson, M. Mechanism of action of HOXB4 on the hematopoietic differentiation of embryonic stem cells. Stem Cells, 2012, 30(3), 379-385.
[http://dx.doi.org/10.1002/stem.1036] [PMID: 22267295]
[64]
Oshima, M.; Endoh, M.; Endo, T.A.; Toyoda, T.; Nakajima-Takagi, Y.; Sugiyama, F.; Koseki, H.; Kyba, M.; Iwama, A.; Osawa, M. Genome-wide analysis of target genes regulated by HoxB4 in hematopoietic stem and progenitor cells developing from embryonic stem cells. Blood, 2011, 117(15), e142-e150.
[http://dx.doi.org/10.1182/blood-2010-12-323212] [PMID: 21343615]
[65]
Fan, R.; Bonde, S.; Gao, P.; Sotomayor, B.; Chen, C.; Mouw, T.; Zavazava, N.; Tan, K. Dynamic HoxB4-regulatory network during embryonic stem cell differentiation to hematopoietic cells. Blood, 2012, 119(19), e139-e147.
[http://dx.doi.org/10.1182/blood-2011-12-396754] [PMID: 22438249]
[66]
Seifert, A.; Werheid, D.F.; Knapp, S.M.; Tobiasch, E. Role of Hox genes in stem cell differentiation. World J. Stem Cells, 2015, 7(3), 583-595.
[http://dx.doi.org/10.4252/wjsc.v7.i3.583] [PMID: 25914765]
[67]
Zardo, G.; Cimino, G.; Nervi, C. Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: Therapeutic potential of cell reprogramming. Leukemia, 2008, 22(8), 1503-1518.
[http://dx.doi.org/10.1038/leu.2008.141] [PMID: 18548105]
[68]
Lawrence, H.J.; Helgason, C.D.; Sauvageau, G.; Fong, S.; Izon, D.J.; Humphries, R.K.; Largman, C. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood, 1997, 89(6), 1922-1930.
[PMID: 9058712]
[69]
Shojaei, F.; Menendez, P. Molecular profiling of candidate human hematopoietic stem cells derived from human embryonic stem cells. Exp. Hematol., 2008, 36(11), 1436-1448.
[http://dx.doi.org/10.1016/j.exphem.2008.06.001] [PMID: 18694618]
[70]
Ramos-Mejía, V.; Navarro-Montero, O.; Ayllón, V.; Bueno, C.; Romero, T.; Real, P.J.; Menendez, P. HOXA9 promotes hematopoietic commitment of human embryonic stem cells. Blood, 2014, 124(20), 3065-3075.
[http://dx.doi.org/10.1182/blood-2014-03-558825] [PMID: 25185710]
[71]
Dou, D.R.; Calvanese, V.; Sierra, M.I.; Nguyen, A.T.; Minasian, A.; Saarikoski, P.; Sasidharan, R.; Ramirez, C.M.; Zack, J.A.; Crooks, G.M.; Galic, Z.; Mikkola, H.K. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat. Cell Biol., 2016, 18(6), 595-606.
[http://dx.doi.org/10.1038/ncb3354] [PMID: 27183470]
[72]
He, H.; Hua, X.; Yan, J. Epigenetic regulations in hematopoietic Hox code. Oncogene, 2011, 30(4), 379-388.
[http://dx.doi.org/10.1038/onc.2010.484] [PMID: 20972460]
[73]
Bueno, C.; Montes, R.; Melen, G.J.; Ramos-Mejia, V.; Real, P.J.; Ayllón, V.; Sanchez, L.; Ligero, G.; Gutierrez-Aranda, I.; Fernández, A.F.; Fraga, M.F.; Moreno-Gimeno, I.; Burks, D. Plaza-Calonge, Mdel.C.; Rodríguez-Manzaneque, J.C.; Menendez, P. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification. Cell Res., 2012, 22(6), 986-1002.
[http://dx.doi.org/10.1038/cr.2012.4] [PMID: 22212479]
[74]
Chung, N.; Jee, B.K.; Chae, S.W.; Jeon, Y.W.; Lee, K.H.; Rha, H.K. HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol. Biol. Rep., 2009, 36(2), 227-235.
[http://dx.doi.org/10.1007/s11033-007-9171-6] [PMID: 17972163]
[75]
Slany, R.K. The molecular biology of mixed lineage leukemia. Haematologica, 2009, 94(7), 984-993.
[http://dx.doi.org/10.3324/haematol.2008.002436] [PMID: 19535349]
[76]
Erfurth, F.E.; Popovic, R.; Grembecka, J.; Cierpicki, T.; Theisler, C.; Xia, Z.B.; Stuart, T.; Diaz, M.O.; Bushweller, J.H.; Zeleznik-Le, N.J. MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7517-7522.
[http://dx.doi.org/10.1073/pnas.0800090105] [PMID: 18483194]
[77]
Alvarez-Dominguez, J.R.; Lodish, H.F. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood, 2017, 130(18), 1965-1975.
[http://dx.doi.org/10.1182/blood-2017-06-788695] [PMID: 28928124]
[78]
De Kumar, B.; Parrish, M.E.; Slaughter, B.D.; Unruh, J.R.; Gogol, M.; Seidel, C.; Paulson, A.; Li, H.; Gaudenz, K.; Peak, A.; McDowell, W.; Fleharty, B.; Ahn, Y.; Lin, C.; Smith, E.; Shilatifard, A.; Krumlauf, R. Analysis of dynamic changes in retinoid-induced transcription and epigenetic profiles of murine Hox clusters in ES cells. Genome Res., 2015, 25(8), 1229-1243.
[http://dx.doi.org/10.1101/gr.184978.114] [PMID: 26025802]
[79]
Chen, Z.H.; Wang, W.T.; Huang, W.; Fang, K.; Sun, Y.M.; Liu, S.R.; Luo, X.Q.; Chen, Y.Q. The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ., 2017, 24(2), 212-224.
[http://dx.doi.org/10.1038/cdd.2016.111] [PMID: 27740626]
[80]
Bhatlekar, S.; Fields, J.Z.; Boman, B.M. Role of HOX genes in stem cell differentiation and cancer. Stem Cells Int., 2018, 20183569493
[http://dx.doi.org/10.1155/2018/3569493] [PMID: 30154863]
[81]
Zhang, X.; Lian, Z.; Padden, C.; Gerstein, M.B.; Rozowsky, J.; Snyder, M.; Gingeras, T.R.; Kapranov, P.; Weissman, S.M.; Newburger, P.E. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood, 2009, 113(11), 2526-2534.
[http://dx.doi.org/10.1182/blood-2008-06-162164] [PMID: 19144990]
[82]
Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A.; Wysocka, J.; Lei, M.; Dekker, J.; Helms, J.A.; Chang, H.Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341), 120-124.
[http://dx.doi.org/10.1038/nature09819] [PMID: 21423168]
[83]
Weiss, M.J.; Orkin, S.H. GATA transcription factors: Key regulators of hematopoiesis. Exp. Hematol., 1995, 23(2), 99-107.
[PMID: 7828675]
[84]
Gutiérrez, L.; Nikolic, T.; van Dijk, T.B.; Hammad, H.; Vos, N.; Willart, M.; Grosveld, F.; Philipsen, S.; Lambrecht, B.N. Gata1 regulates dendritic-cell development and survival. Blood, 2007, 110(6), 1933-1941.
[http://dx.doi.org/10.1182/blood-2006-09-048322] [PMID: 17505015]
[85]
Moriguchi, T.; Yamamoto, M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int. J. Hematol., 2014, 100(5), 417-424.
[http://dx.doi.org/10.1007/s12185-014-1568-0] [PMID: 24638828]
[86]
Lugus, J.J.; Chung, Y.S.; Mills, J.C.; Kim, S.I.; Grass, J.; Kyba, M.; Doherty, J.M.; Bresnick, E.H.; Choi, K. GATA2 functions at multiple steps in hemangioblast development and differentiation. Development, 2007, 134(2), 393-405.
[http://dx.doi.org/10.1242/dev.02731] [PMID: 17166922]
[87]
Hosoya, T.; Maillard, I.; Engel, J.D. From the cradle to the grave: Activities of GATA-3 throughout T-cell development and differentiation. Immunol. Rev., 2010, 238(1), 110-125.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00954.x] [PMID: 20969588]
[88]
Pevny, L.; Lin, C.S.; D’Agati, V.; Simon, M.C.; Orkin, S.H.; Costantini, F. Development of hematopoietic cells lacking transcription factor GATA-1. Development, 1995, 121(1), 163-172.
[PMID: 7867497]
[89]
Huang, K.; Du, J.; Ma, N.; Liu, J.; Wu, P.; Dong, X.; Meng, M.; Wang, W.; Chen, X.; Shi, X.; Chen, Q.; Yang, Z.; Chen, S.; Zhang, J.; Li, Y.; Li, W.; Zheng, Y.; Cai, J.; Li, P.; Sun, X.; Wang, J.; Pei, D.; Pan, G. GATA2(-/-) human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment. Cell Regen. (Lond.), 2015, 4(1), 4.
[http://dx.doi.org/10.1186/s13619-015-0018-7] [PMID: 26246892]
[90]
Frelin, C.; Herrington, R.; Janmohamed, S.; Barbara, M.; Tran, G.; Paige, C.J.; Benveniste, P.; Zuñiga-Pflücker, J.C.; Souabni, A.; Busslinger, M.; Iscove, N.N. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat. Immunol., 2013, 14(10), 1037-1044.
[http://dx.doi.org/10.1038/ni.2692] [PMID: 23974957]
[91]
Lim, K.C.; Hosoya, T.; Brandt, W.; Ku, C.J.; Hosoya-Ohmura, S.; Camper, S.A.; Yamamoto, M.; Engel, J.D. Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J. Clin. Invest., 2012, 122(10), 3705-3717.
[http://dx.doi.org/10.1172/JCI61619] [PMID: 22996665]
[92]
Ohmori, S.; Moriguchi, T.; Noguchi, Y.; Ikeda, M.; Kobayashi, K.; Tomaru, N.; Ishijima, Y.; Ohneda, O.; Yamamoto, M.; Ohneda, K. GATA2 is critical for the maintenance of cellular identity in differentiated mast cells derived from mouse bone marrow. Blood, 2015, 125(21), 3306-3315.
[http://dx.doi.org/10.1182/blood-2014-11-612465] [PMID: 25855601]
[93]
Fujiwara, T.; O’Geen, H.; Keles, S.; Blahnik, K.; Linnemann, A.K.; Kang, Y.A.; Choi, K.; Farnham, P.J.; Bresnick, E.H. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol. Cell, 2009, 36(4), 667-681.
[http://dx.doi.org/10.1016/j.molcel.2009.11.001] [PMID: 19941826]
[94]
Grass, J.A.; Boyer, M.E.; Pal, S.; Wu, J.; Weiss, M.J.; Bresnick, E.H. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8811-8816.
[http://dx.doi.org/10.1073/pnas.1432147100] [PMID: 12857954]
[95]
Kang, H.; Mesquitta, W.T.; Jung, H.S.; Moskvin, O.V.; Thomson, J.A.; Slukvin, I.I. GATA2 is dispensable for specification of hemogenic endothelium but promotes endothelial-to-hematopoietic transition. Stem Cell Reports, 2018, 11(1), 197-211.
[http://dx.doi.org/10.1016/j.stemcr.2018.05.002] [PMID: 29861167]
[96]
Kaneko, H.; Kobayashi, E.; Yamamoto, M.; Shimizu, R. N- and C-terminal transactivation domains of GATA1 protein coordinate hematopoietic program. J. Biol. Chem., 2012, 287(25), 21439-21449.
[http://dx.doi.org/10.1074/jbc.M112.370437] [PMID: 22556427]
[97]
Matsunaga, H.; Sasaki, S.; Suzuki, S.; Matsushita, A.; Nakamura, H.; Nakamura, H.M.; Hirahara, N.; Kuroda, G.; Iwaki, H.; Ohba, K.; Morita, H.; Oki, Y.; Suda, T. Essential role of GATA2 in the negative regulation of type 2 deiodinase gene by liganded thyroid hormone receptor β2 in thyrotroph. PLoS One, 2015, 10(11)e0142400
[http://dx.doi.org/10.1371/journal.pone.0142400] [PMID: 26571013]
[98]
Tsuzuki, S.; Kitajima, K.; Nakano, T.; Glasow, A.; Zelent, A.; Enver, T. Cross talk between retinoic acid signaling and transcription factor GATA-2. Mol. Cell. Biol., 2004, 24(15), 6824-6836.
[http://dx.doi.org/10.1128/MCB.24.15.6824-6836.2004] [PMID: 15254248]
[99]
Wilson, N.K.; Foster, S.D.; Wang, X.; Knezevic, K.; Schütte, J.; Kaimakis, P.; Chilarska, P.M.; Kinston, S.; Ouwehand, W.H.; Dzierzak, E.; Pimanda, J.E.; de Bruijn, M.F.; Göttgens, B. Combinatorial transcriptional control in blood stem/progenitor cells: Genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell, 2010, 7(4), 532-544.
[http://dx.doi.org/10.1016/j.stem.2010.07.016] [PMID: 20887958]
[100]
Pal, S.; Cantor, A.B.; Johnson, K.D.; Moran, T.B.; Boyer, M.E.; Orkin, S.H.; Bresnick, E.H. Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc. Natl. Acad. Sci. USA, 2004, 101(4), 980-985.
[http://dx.doi.org/10.1073/pnas.0307612100] [PMID: 14715908]
[101]
Katsumura, K.R.; Bresnick, E.H.; Group, G.F.M. The GATA factor revolution in hematology. Blood, 2017, 129(15), 2092-2102.
[http://dx.doi.org/10.1182/blood-2016-09-687871] [PMID: 28179282]
[102]
Hong, W.; Nakazawa, M.; Chen, Y.Y.; Kori, R.; Vakoc, C.R.; Rakowski, C.; Blobel, G.A. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J., 2005, 24(13), 2367-2378.
[http://dx.doi.org/10.1038/sj.emboj.7600703] [PMID: 15920470]
[103]
Lamonica, J.M.; Vakoc, C.R.; Blobel, G.A. Acetylation of GATA-1 is required for chromatin occupancy. Blood, 2006, 108(12), 3736-3738.
[http://dx.doi.org/10.1182/blood-2006-07-032847] [PMID: 16888089]
[104]
Mancini, E.; Sanjuan-Pla, A.; Luciani, L.; Moore, S.; Grover, A.; Zay, A.; Rasmussen, K.D.; Luc, S.; Bilbao, D.; O’Carroll, D.; Jacobsen, S.E.; Nerlov, C. FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO J., 2012, 31(2), 351-365.
[http://dx.doi.org/10.1038/emboj.2011.390] [PMID: 22068055]
[105]
Turkistany, S.A.; DeKoter, R.P. The transcription factor PU.1 is a critical regulator of cellular communication in the immune system. Arch. Immunol. Ther. Exp. (Warsz.), 2011, 59(6), 431-440.
[http://dx.doi.org/10.1007/s00005-011-0147-9] [PMID: 21972017]
[106]
Burda, P.; Vargova, J.; Curik, N.; Salek, C.; Papadopoulos, G.L.; Strouboulis, J.; Stopka, T. GATA-1 Inhibits PU.1 Gene via DNA and histone H3K9 methylation of its distal enhancer in erythroleukemia. PLoS One, 2016, 11(3)e0152234
[http://dx.doi.org/10.1371/journal.pone.0152234] [PMID: 27010793]
[107]
Zhang, Y.; Li, W.; Laurent, T.; Ding, S. Small molecules, big roles - the chemical manipulation of stem cell fate and somatic cell reprogramming. J. Cell Sci., 2012, 125(Pt 23), 5609-5620.
[http://dx.doi.org/10.1242/jcs.096032] [PMID: 23420199]
[108]
Okuno, Y.; Huang, G.; Rosenbauer, F.; Evans, E.K.; Radomska, H.S.; Iwasaki, H.; Akashi, K.; Moreau-Gachelin, F.; Li, Y.; Zhang, P.; Göttgens, B.; Tenen, D.G. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol. Cell. Biol., 2005, 25(7), 2832-2845.
[http://dx.doi.org/10.1128/MCB.25.7.2832-2845.2005] [PMID: 15767686]
[109]
Rosenbauer, F.; Owens, B.M.; Yu, L.; Tumang, J.R.; Steidl, U.; Kutok, J.L.; Clayton, L.K.; Wagner, K.; Scheller, M.; Iwasaki, H.; Liu, C.; Hackanson, B.; Akashi, K.; Leutz, A.; Rothstein, T.L.; Plass, C.; Tenen, D.G. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat. Genet., 2006, 38(1), 27-37.
[http://dx.doi.org/10.1038/ng1679] [PMID: 16311598]
[110]
Burda, P.; Laslo, P.; Stopka, T. The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia, 2010, 24(7), 1249-1257.
[http://dx.doi.org/10.1038/leu.2010.104] [PMID: 20520638]
[111]
Tripic, T.; Deng, W.; Cheng, Y.; Zhang, Y.; Vakoc, C.R.; Gregory, G.D.; Hardison, R.C.; Blobel, G.A. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood, 2009, 113(10), 2191-2201.
[http://dx.doi.org/10.1182/blood-2008-07-169417] [PMID: 19011221]
[112]
Rodriguez, P.; Bonte, E.; Krijgsveld, J.; Kolodziej, K.E.; Guyot, B.; Heck, A.J.; Vyas, P.; de Boer, E.; Grosveld, F.; Strouboulis, J. GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J., 2005, 24(13), 2354-2366.
[http://dx.doi.org/10.1038/sj.emboj.7600702] [PMID: 15920471]
[113]
Porcher, C.; Chagraoui, H.; Kristiansen, M.S. SCL/TAL1: A multifaceted regulator from blood development to disease. Blood, 2017, 129(15), 2051-2060.
[http://dx.doi.org/10.1182/blood-2016-12-754051] [PMID: 28179281]
[114]
Wu, W.; Morrissey, C.S.; Keller, C.A.; Mishra, T.; Pimkin, M.; Blobel, G.A.; Weiss, M.J.; Hardison, R.C. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res., 2014, 24(12), 1945-1962.
[http://dx.doi.org/10.1101/gr.164830.113] [PMID: 25319994]
[115]
Hoang, T.; Lambert, J.A.; Martin, R. SCL/TAL1 in hematopoiesis and cellular reprogramming. Curr. Top. Dev. Biol., 2016, 118, 163-204.
[http://dx.doi.org/10.1016/bs.ctdb.2016.01.004] [PMID: 27137657]
[116]
Gomes, A.M. Cooperative transcription factor induction mediates hemogenic reprogramming. Cell Rep, 2018, 25(10), 2821-2835. e7
[117]
Malinge, S.; Thiollier, C.; Chlon, T.M.; Doré, L.C.; Diebold, L.; Bluteau, O.; Mabialah, V.; Vainchenker, W.; Dessen, P.; Winandy, S.; Mercher, T.; Crispino, J.D. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood, 2013, 121(13), 2440-2451.
[http://dx.doi.org/10.1182/blood-2012-08-450627] [PMID: 23335373]
[118]
Rodrigues, N.P.; Tipping, A.J.; Wang, Z.; Enver, T. GATA-2 mediated regulation of normal hematopoietic stem/progenitor cell function, myelodysplasia and myeloid leukemia. Int. J. Biochem. Cell Biol., 2012, 44(3), 457-460.
[http://dx.doi.org/10.1016/j.biocel.2011.12.004] [PMID: 22192845]
[119]
Bartel, D.P. Metazoan microRNAs. Cell, 2018, 173(1), 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[120]
Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res., 2004, 14(10A), 1902-1910.
[http://dx.doi.org/10.1101/gr.2722704] [PMID: 15364901]
[121]
Li, Z.; Huang, H.; Chen, P.; He, M.; Li, Y.; Arnovitz, S.; Jiang, X.; He, C.; Hyjek, E.; Zhang, J.; Zhang, Z.; Elkahloun, A.; Cao, D.; Shen, C.; Wunderlich, M.; Wang, Y.; Neilly, M.B.; Jin, J.; Wei, M.; Lu, J.; Valk, P.J.; Delwel, R.; Lowenberg, B.; Le Beau, M.M.; Vardiman, J.; Mulloy, J.C.; Zeleznik-Le, N.J.; Liu, P.P.; Zhang, J.; Chen, J. miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat. Commun., 2012, 3, 688.
[http://dx.doi.org/10.1038/ncomms1681] [PMID: 22353710]
[122]
Gerrits, A.; Walasek, M.A.; Olthof, S.; Weersing, E.; Ritsema, M.; Zwart, E.; van Os, R.; Bystrykh, L.V.; de Haan, G. Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator of primitive hematopoietic cells. Blood, 2012, 119(2), 377-387.
[http://dx.doi.org/10.1182/blood-2011-01-331686] [PMID: 22123844]
[123]
Ooi, A.G.; Sahoo, D.; Adorno, M.; Wang, Y.; Weissman, I.L.; Park, C.Y. MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21505-21510.
[http://dx.doi.org/10.1073/pnas.1016218107] [PMID: 21118986]
[124]
Yekta, S.; Shih, I.H.; Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004, 304(5670), 594-596.
[http://dx.doi.org/10.1126/science.1097434] [PMID: 15105502]
[125]
Velu, C.S.; Baktula, A.M.; Grimes, H.L. Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood, 2009, 113(19), 4720-4728.
[http://dx.doi.org/10.1182/blood-2008-11-190215] [PMID: 19278956]
[126]
Zhao, H.; Kalota, A.; Jin, S.; Gewirtz, A.M. The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood, 2009, 113(3), 505-516.
[http://dx.doi.org/10.1182/blood-2008-01-136218] [PMID: 18818396]
[127]
Dore, L.C.; Amigo, J.D.; Dos Santos, C.O.; Zhang, Z.; Gai, X.; Tobias, J.W.; Yu, D.; Klein, A.M.; Dorman, C.; Wu, W.; Hardison, R.C.; Paw, B.H.; Weiss, M.J.A. GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl. Acad. Sci. USA, 2008, 105(9), 3333-3338.
[http://dx.doi.org/10.1073/pnas.0712312105] [PMID: 18303114]
[128]
Kurkewich, J.L.; Hansen, J.; Klopfenstein, N.; Zhang, H.; Wood, C.; Boucher, A.; Hickman, J.; Muench, D.E.; Grimes, H.L.; Dahl, R. The miR-23a~27a~24-2 microRNA cluster buffers transcription and signaling pathways during hematopoiesis. PLoS Genet., 2017, 13(7)e1006887
[http://dx.doi.org/10.1371/journal.pgen.1006887] [PMID: 28704388]
[129]
Wang, F.; Zhu, Y.; Guo, L.; Dong, L.; Liu, H.; Yin, H.; Zhang, Z.; Li, Y.; Liu, C.; Ma, Y.; Song, W.; He, A.; Wang, Q.; Wang, L.; Zhang, J.; Li, J.; Yu, J. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res., 2014, 42(1), 442-457.
[http://dx.doi.org/10.1093/nar/gkt848] [PMID: 24049083]
[130]
Metcalf, D. Hematopoietic cytokines. Blood, 2008, 111(2), 485-491.
[http://dx.doi.org/10.1182/blood-2007-03-079681] [PMID: 18182579]
[131]
Felli, N.; Fontana, L.; Pelosi, E.; Botta, R.; Bonci, D.; Facchiano, F.; Liuzzi, F.; Lulli, V.; Morsilli, O.; Santoro, S.; Valtieri, M.; Calin, G.A.; Liu, C.G.; Sorrentino, A.; Croce, C.M.; Peschle, C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 18081-18086.
[http://dx.doi.org/10.1073/pnas.0506216102] [PMID: 16330772]
[132]
Lennartsson, J.; Rönnstrand, L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol. Rev., 2012, 92(4), 1619-1649.
[http://dx.doi.org/10.1152/physrev.00046.2011] [PMID: 23073628]
[133]
Lee, J.Y.; Kim, M.; Heo, H.R.; Ha, K.S.; Han, E.T.; Park, W.S.; Yang, S.R.; Hong, S.H. Inhibition of MicroRNA-221 and 222 enhances hematopoietic differentiation from human pluripotent stem cells via c-KIT upregulation. Mol. Cells, 2018, 41(11), 971-978.
[PMID: 30396237]
[134]
Chadwick, K.; Wang, L.; Li, L.; Menendez, P.; Murdoch, B.; Rouleau, A.; Bhatia, M. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 2003, 102(3), 906-915.
[http://dx.doi.org/10.1182/blood-2003-03-0832] [PMID: 12702499]
[135]
Marshall, C.J.; Kinnon, C.; Thrasher, A.J. Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. Blood, 2000, 96(4), 1591-1593.
[PMID: 10942412]
[136]
Sumi, T.; Tsuneyoshi, N.; Nakatsuji, N.; Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development, 2008, 135(17), 2969-2979.
[http://dx.doi.org/10.1242/dev.021121] [PMID: 18667462]
[137]
Verheyen, E.M. Opposing effects of Wnt and MAPK on BMP/Smad signal duration. Dev. Cell, 2007, 13(6), 755-756.
[http://dx.doi.org/10.1016/j.devcel.2007.11.006] [PMID: 18061555]
[138]
Lengerke, C.; Schmitt, S.; Bowman, T.V.; Jang, I.H.; Maouche-Chretien, L.; McKinney-Freeman, S.; Davidson, A.J.; Hammerschmidt, M.; Rentzsch, F.; Green, J.B.; Zon, L.I.; Daley, G.Q. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell, 2008, 2(1), 72-82.
[http://dx.doi.org/10.1016/j.stem.2007.10.022] [PMID: 18371423]
[139]
Nostro, M.C.; Cheng, X.; Keller, G.M.; Gadue, P. Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2008, 2(1), 60-71.
[http://dx.doi.org/10.1016/j.stem.2007.10.011] [PMID: 18371422]
[140]
Tran, F.H.; Zheng, J.J. Modulating the wnt signaling pathway with small molecules. Protein Sci., 2017, 26(4), 650-661.
[http://dx.doi.org/10.1002/pro.3122] [PMID: 28120389]
[141]
Sturgeon, C.M.; Ditadi, A.; Awong, G.; Kennedy, M.; Keller, G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol., 2014, 32(6), 554-561.
[http://dx.doi.org/10.1038/nbt.2915] [PMID: 24837661]
[142]
Chanda, B.; Ditadi, A.; Iscove, N.N.; Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell, 2013, 155(1), 215-227.
[http://dx.doi.org/10.1016/j.cell.2013.08.055] [PMID: 24074870]
[143]
Rice, K.L.; Hormaeche, I.; Licht, J.D. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene, 2007, 26(47), 6697-6714.
[http://dx.doi.org/10.1038/sj.onc.1210755] [PMID: 17934479]
[144]
Herviou, L.; Cavalli, G.; Cartron, G.; Klein, B.; Moreaux, J. EZH2 in normal hematopoiesis and hematological malignancies. Oncotarget, 2016, 7(3), 2284-2296.
[http://dx.doi.org/10.18632/oncotarget.6198] [PMID: 26497210]
[145]
Hu, D.; Shilatifard, A. Epigenetics of hematopoiesis and hematological malignancies. Genes Dev., 2016, 30(18), 2021-2041.
[http://dx.doi.org/10.1101/gad.284109.116] [PMID: 27798847]
[146]
Yan, J.; Ng, S.B.; Tay, J.L.; Lin, B.; Koh, T.L.; Tan, J.; Selvarajan, V.; Liu, S.C.; Bi, C.; Wang, S.; Choo, S.N.; Shimizu, N.; Huang, G.; Yu, Q.; Chng, W.J. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood, 2013, 121(22), 4512-4520.
[http://dx.doi.org/10.1182/blood-2012-08-450494] [PMID: 23529930]
[147]
Yamaguchi, H.; Hung, M.C. Regulation and Role of EZH2 in Cancer. Cancer Res. Treat., 2014, 46(3), 209-222.
[http://dx.doi.org/10.4143/crt.2014.46.3.209] [PMID: 25038756]
[148]
Asangani, I.A.; Ateeq, B.; Cao, Q.; Dodson, L.; Pandhi, M.; Kunju, L.P.; Mehra, R.; Lonigro, R.J.; Siddiqui, J.; Palanisamy, N.; Wu, Y.M.; Cao, X.; Kim, J.H.; Zhao, M.; Qin, Z.S.; Iyer, M.K.; Maher, C.A.; Kumar-Sinha, C.; Varambally, S.; Chinnaiyan, A.M. Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Mol. Cell, 2013, 49(1), 80-93.
[http://dx.doi.org/10.1016/j.molcel.2012.10.008] [PMID: 23159737]
[149]
Nishizawa, M.; Chonabayashi, K.; Nomura, M.; Tanaka, A.; Nakamura, M.; Inagaki, A.; Nishikawa, M.; Takei, I.; Oishi, A.; Tanabe, K.; Ohnuki, M.; Yokota, H.; Koyanagi-Aoi, M.; Okita, K.; Watanabe, A.; Takaori-Kondo, A.; Yamanaka, S.; Yoshida, Y. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell, 2016, 19(3), 341-354.
[http://dx.doi.org/10.1016/j.stem.2016.06.019] [PMID: 27476965]
[150]
Cypris, O.; Frobel, J.; Rai, S.; Franzen, J.; Sontag, S.; Goetzke, R.; Szymanski de Toledo, M.A.; Zenke, M.; Wagner, W. Tracking of epigenetic changes during hematopoietic differentiation of induced pluripotent stem cells. Clin. Epigenetics, 2019, 11(1), 19.
[http://dx.doi.org/10.1186/s13148-019-0617-1] [PMID: 30717806]
[151]
Truong, V.A.; Hsu, M.N.; Kieu Nguyen, N.T.; Lin, M.W.; Shen, C.C.; Lin, C.Y.; Hu, Y.C. CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Res., 2019, 47(13)e74
[http://dx.doi.org/10.1093/nar/gkz267] [PMID: 30997496]
[152]
Li, M.; Suzuki, K.; Kim, N.Y.; Liu, G.H.; Izpisua Belmonte, J.C. A cut above the rest: Targeted genome editing technologies in human pluripotent stem cells. J. Biol. Chem., 2014, 289(8), 4594-4599.
[http://dx.doi.org/10.1074/jbc.R113.488247] [PMID: 24362028]
[153]
Li, M.; Suzuki, K.; Qu, J.; Saini, P.; Dubova, I.; Yi, F.; Lee, J.; Sancho-Martinez, I.; Liu, G.H.; Izpisua Belmonte, J.C. Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res., 2011, 21(12), 1740-1744.
[http://dx.doi.org/10.1038/cr.2011.186] [PMID: 22105484]
[154]
Suzuki, K.; Yu, C.; Qu, J.; Li, M.; Yao, X.; Yuan, T.; Goebl, A.; Tang, S.; Ren, R.; Aizawa, E.; Zhang, F.; Xu, X.; Soligalla, R.D.; Chen, F.; Kim, J.; Kim, N.Y.; Liao, H.K.; Benner, C.; Esteban, C.R.; Jin, Y.; Liu, G.H.; Li, Y.; Izpisua Belmonte, J.C. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell, 2014, 15(1), 31-36.
[http://dx.doi.org/10.1016/j.stem.2014.06.016] [PMID: 24996168]
[155]
Liu, G.H.; Suzuki, K.; Li, M.; Qu, J.; Montserrat, N.; Tarantino, C.; Gu, Y.; Yi, F.; Xu, X.; Zhang, W.; Ruiz, S.; Plongthongkum, N.; Zhang, K.; Masuda, S.; Nivet, E.; Tsunekawa, Y.; Soligalla, R.D.; Goebl, A.; Aizawa, E.; Kim, N.Y.; Kim, J.; Dubova, I.; Li, Y.; Ren, R.; Benner, C.; Del Sol, A.; Bueren, J.; Trujillo, J.P.; Surralles, J.; Cappelli, E.; Dufour, C.; Esteban, C.R.; Belmonte, J.C.I. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat. Commun., 2014, 5, 4330.
[http://dx.doi.org/10.1038/ncomms5330] [PMID: 24999918]
[156]
Castano, J.; Aranda, S.; Bueno, C.; Calero-Nieto, F.J.; Mejia-Ramirez, E.; Mosquera, J.L. GATA2 promotes hematopoietic development and represses cardiac differentiation of human mesoderm. Stem Cell Reports, 13(3), 515-529. S2213- 6711(19)30261-9 [pii]

© 2024 Bentham Science Publishers | Privacy Policy