Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Plant- and Nutraceutical-based Approach for the Management of Diabetes and its Neurological Complications: A Narrative Review

Author(s): Yusuf Öztürk* and Nilgün Öztürk

Volume 25, Issue 33, 2019

Page: [3536 - 3549] Pages: 14

DOI: 10.2174/1381612825666191014165633

Price: $65

conference banner
Abstract

Diabetes is an important metabolic disease affecting many organs and systems in the body. The nervous system is one of the body systems affected by diabetes and neuropathic complications are troublesome in diabetic patients with many consequences. As diabetes has deleterious influences almost on bodily systems, an integrative approach seems to be necessary accepting the body as a whole and integrating body systems with lifestyle and living environment. Like some traditional health systems such as Ayurveda, integrative approach includes additional modalities to overcome both diabetes and diabetic complications. In general, these modalities consist of nutraceuticals and plant products. Prebiotics and probiotics are two types of nutraceuticals having active ingredients, such as antioxidants, nutrient factors, microorganisms, etc. Many plants are indicated for the cure of diabetes. All of these may be employed in the prevention and in the non-pharmacological management of mildto- moderate diabetes. Severe diabetes should require appropriate drug selection. Being complementary, prebiotics, probiotics, plants and exercise may be additive for the drug therapy of diabetes. Similarly, there are complementary approaches to prevent and cure neurological and/or behavioral manifestations of diabetes, which may be included in therapy and prevention plans. A scheme is given for the prevention and therapy of comorbid depression, which is one of the most common behavioral complications of diabetes. Within this scheme, the main criterion for the selection of modalities is the severity of diseases, so that personalized management may be developed for diabetic patients using prebiotics and probiotics in their diets, plants and drugs avoiding possible interactions.

Keywords: Diabetes, diabetic neuropathy, prebiotics, probiotics, nutraceuticals, plants, microbiome, antioxidants.

[1]
Mason DT, Bartter FC. Autonomic regulation of blood volume. Anesthesiology 1968; 29(4): 681-92.
[http://dx.doi.org/10.1097/00000542-196807000-00010] [PMID: 4874153]
[2]
Hoebel BG. Feeding: neural control of intake. Annu Rev Physiol 1971; 33: 533-68.
[http://dx.doi.org/10.1146/annurev.ph.33.030171.002533] [PMID: 4951055]
[3]
Leung PC, Armstrong DT. Interactions of steroids and gonadotropins in the control of steroidogenesis in the ovarian follicle. Annu Rev Physiol 1980; 42: 71-82.
[http://dx.doi.org/10.1146/annurev.ph.42.030180.000443] [PMID: 6773470]
[4]
Alberti KG, Cuthbert C. The hydrogen ion in normal metabolism: a review. Ciba Found Symp 1982; 87: 1-19.
[http://dx.doi.org/10.1002/9780470720691.ch1] [PMID: 6804190]
[5]
Gurer-Orhan H, Ince E, Konyar D, Saso L, Suzen S. The role of oxidative stress modulators in breast cancer. Curr Med Chem 2018; 25(33): 4084-101.
[http://dx.doi.org/10.2174/0929867324666170711114336] [PMID: 28699501]
[6]
Regoli D, Dion S, Rhaleb NE, Drapeau G, D’Orléans-Juste P. Vasoactive peptides and their receptors. Blood Vessels 1990; 27(2-5): 137-45.
[PMID: 2173637]
[7]
Oztürk Y. Kinin receptors and their antagonists as novel therapeutic agents. Curr Pharm Des 2001; 7(2): 135-61.
[http://dx.doi.org/10.2174/1381612013398338] [PMID: 11172705]
[8]
Stridh S, Palm F, Takahashi T, Ikegami-Kawai M, Friederich-Persson M, Hansell P. Hyaluronan production by renomedullary interstitial cells: influence of endothelin, angiotensin ii and vasopressin. Int J Mol Sci 2017; 18(12)E2701
[http://dx.doi.org/10.3390/ijms18122701] [PMID: 29236055]
[9]
Graham GJ, Pragnell IB. Negative regulators of haemopoiesis-current advances. Prog Growth Factor Res 1990; 2(3): 181-92.
[http://dx.doi.org/10.1016/0955-2235(90)90004-4] [PMID: 2132955]
[10]
Mantovani A, Bottazzi B, Sozzani S, et al. Cytokine regulation of tumour-associated macrophages. Res Immunol 1993; 144(4): 280-3.
[http://dx.doi.org/10.1016/0923-2494(93)80108-B] [PMID: 8378597]
[11]
Stone MJ, Hayward JA, Huang CE, Huma Z, Sanchez J. Mechanisms of regulation of the chemokine-receptor network. Int J Mol Sci 2017; 18(2)E342
[http://dx.doi.org/10.3390/ijms18020342] [PMID: 28178200]
[12]
Zimmer K. How many cells are in your body? National Geographics 2013. Available at:. https://www.nationalgeographic.com/science/phenomena/2013/10/23/how-many-cells-are-in-your-body/
[13]
Wang HX, Wang YP. Gut microbiota-brain Axis. Chin Med J (Engl) 2016; 129(19): 2373-80.
[http://dx.doi.org/10.4103/0366-6999.190667] [PMID: 27647198]
[14]
Cudworth AG. Type I diabetes mellitus. Diabetologia 1978; 14(5): 281-91.
[http://dx.doi.org/10.1007/BF01223018] [PMID: 77236]
[15]
Minkowski O, Bretzel RG. Further reports on diabetes mellitus after the exstirpation of the pancreas. J Mol Med (Berl) 2002; 80(1): 3-4.
[PMID: 11862318]
[16]
Oztürk Y, Altan VM, Yildizoğlu-Ari N. Effects of experimental diabetes and insulin on smooth muscle functions. Pharmacol Rev 1996; 48(1): 69-112.
[PMID: 8685248]
[17]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[18]
Powell RC. Helen Flanders Dunbar (1902-1959) and a holistic approach to psychosomatic problems. I. The rise and fall of a medical philosophy. Psychiatr Q 1977; 49(2): 133-52.
[http://dx.doi.org/10.1007/BF01071661] [PMID: 329311]
[19]
Coleman ML. An integrative approach to individual and group psychology. Psychoanal Rev 1949; 36(4): 389-402.
[PMID: 15406980]
[20]
Leiby A, Vazirani M. Complementary, integrative, and holistic medicine: integrative approaches to pediatric ulcerative colitis. Pediatr Rev 2013; 34(9): 405-7.
[http://dx.doi.org/10.1542/pir.34-9-405] [PMID: 24000344]
[21]
Wouters EF, Wouters BB, Augustin IM, Franssen FM. Personalized medicine and chronic obstructive pulmonary disease. Curr Opin Pulm Med 2017; 23(3): 241-6.
[http://dx.doi.org/10.1097/MCP.0000000000000377] [PMID: 28257315]
[22]
Polak JM, Bloom SR. Peptidergic innervation of the gastrointestinal tract. Adv Exp Med Biol 1978; 106: 27-49.
[http://dx.doi.org/10.1007/978-1-4684-7248-6_5] [PMID: 31074]
[23]
Track NS. The gastrointestinal endocrine system. Can Med Assoc J 1980; 122(3): 287-92.
[PMID: 6989456]
[24]
Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 1969; 17(5): 303-13.
[http://dx.doi.org/10.1177/17.5.303] [PMID: 4143745]
[25]
Hughes J, Kosterlitz HW, Smith TW. The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues. Br J Pharmacol 1977; 61(4): 639-47.
[http://dx.doi.org/10.1111/j.1476-5381.1977.tb07557.x] [PMID: 597668]
[26]
Gregory RA. Heterogeneity of gut and brain regulatory peptides. Br Med Bull 1982; 38(3): 271-6.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a071772] [PMID: 6129024]
[27]
Fujimiya M, Inui A. Peptidergic regulation of gastrointestinal motility in rodents. Peptides 2000; 21(10): 1565-82.
[http://dx.doi.org/10.1016/S0196-9781(00)00313-2] [PMID: 11068106]
[28]
Meguid MM, Yang ZJ, Gleason JR. The gut-brain brain-gut axis in anorexia: toward an understanding of food intake regulation. Nutrition 1996; 12(Suppl. 1): S57-62.
[http://dx.doi.org/10.1016/0899-9007(95)00083-6] [PMID: 8850223]
[29]
Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest 2007; 117(1): 13-23.
[http://dx.doi.org/10.1172/JCI30227] [PMID: 17200702]
[30]
Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 2016; 28(5): 620-30.
[http://dx.doi.org/10.1111/nmo.12754] [PMID: 26691223]
[31]
Hoogendoorn CJ, Roy JF, Gonzalez JS. Shared dysregulation of homeostatic brain-body pathways in depression and type 2 diabetes. Curr Diab Rep 2017; 17(10): 90.
[http://dx.doi.org/10.1007/s11892-017-0923-y] [PMID: 28815394]
[32]
Treadwell PE, Rasmussen AF Jr. Role of the adrenals in stress induced resistance to anaphylactic shock. J Immunol 1961; 87: 492-7.
[PMID: 13922363]
[33]
Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, Sugawara K. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 2002; 8: 6-48.
[PMID: 12690937]
[34]
McGregor BA, Murphy KM, Albano DL, Ceballos RM. Stress, cortisol, and B lymphocytes: a novel approach to understanding academic stress and immune function. Stress 2016; 19(2): 185-91.
[http://dx.doi.org/10.3109/10253890.2015.1127913] [PMID: 26644211]
[35]
de la RubiaOrtí JE. Sancho Castillo S, Benlloch M, Julián Rochina M, CorchónArreche S, García-Pardo MP. Impact of the relationship of stress and the immune system in the appearance of alzheimer’s disease. J Alzheimers Dis 2017; 55: 899-903.
[36]
Ogłodek E, Szota A, Just M, Moś D, Araszkiewicz A. The role of the neuroendocrine and immune systems in the pathogenesis of depression. Pharmacol Rep 2014; 66(5): 776-81.
[http://dx.doi.org/10.1016/j.pharep.2014.04.009] [PMID: 25149980]
[37]
Carvalho LA, Urbanova L, Hamer M, Hackett RA, Lazzarino AI, Steptoe A. Blunted glucocorticoid and mineralocorticoid sensitivity to stress in people with diabetes. Psychoneuroendocrinology 2015; 51: 209-18.
[http://dx.doi.org/10.1016/j.psyneuen.2014.09.023] [PMID: 25462894]
[38]
Joseph JJ, Golden SH. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci 2017; 1391(1): 20-34.
[http://dx.doi.org/10.1111/nyas.13217] [PMID: 27750377]
[39]
Godbout JP, Glaser R. Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. J Neuroimmune Pharmacol 2006; 1(4): 421-7.
[http://dx.doi.org/10.1007/s11481-006-9036-0] [PMID: 18040814]
[40]
Tesch GH. Diabetic nephropathy-is this an immune disorder? Clin Sci (Lond) 2017; 131(16): 2183-99.
[http://dx.doi.org/10.1042/CS20160636] [PMID: 28760771]
[41]
Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia-and insulin-resistance-induced heart disease. Diabetologia 2018; 61(1): 21-8.
[http://dx.doi.org/10.1007/s00125-017-4390-4] [PMID: 28776083]
[42]
Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 90(3): 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[43]
Kilian M, Chapple IL, Hannig M, et al. The oral microbiome-an update for oral healthcare professionals. Br Dent J 2016; 221(10): 657-66.
[http://dx.doi.org/10.1038/sj.bdj.2016.865] [PMID: 27857087]
[44]
Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol 2010; 192(19): 5002-17.
[http://dx.doi.org/10.1128/JB.00542-10] [PMID: 20656903]
[45]
Duval da Silva V. van Leeuwenhoek, Antonie (1632-1723) van den Tweel JG, Ed. Pioneers in Pathology,Encyclopedia of Pathology . 2017; pp. 505-10.
[46]
Das NP, Griffiths LA. Studies on flavonoid metabolism. Metabolism of (+)-catechin in the guinea pig. Biochem J 1968; 110(3): 449-56.
[http://dx.doi.org/10.1042/bj1100449] [PMID: 5755325]
[47]
Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 2013; 28(Suppl. 4): 9-17.
[http://dx.doi.org/10.1111/jgh.12294] [PMID: 24251697]
[48]
Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017; 356(6344)eaag2770
[http://dx.doi.org/10.1126/science.aag2770] [PMID: 28642381]
[49]
van Bekkum DW, Knaan S. Role of bacterial microflora in development of intestinal lesions from graft-versus-host reaction. J Natl Cancer Inst 1977; 58(3): 787-90.
[http://dx.doi.org/10.1093/jnci/58.3.787] [PMID: 14265]
[50]
McGhee JR, Michalek SM, Kiyono H, et al. Mucosal immunoregulation: environmental lipopolysaccharide and GALT T lymphocytes regulate the IgA response. Microbiol Immunol 1984; 28(3): 261-80.
[http://dx.doi.org/10.1111/j.1348-0421.1984.tb00679.x] [PMID: 6234450]
[51]
Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res 2017; 4: 14.mmrjournal.biomedcentral.com/articles/10.1186/s40779- 017-0122-9
[52]
Deneer HG, Boychuk I. Reduction of ferric iron by Listeria monocytogenes and other species of Listeria. Can J Microbiol 1993; 39(5): 480-5.
[http://dx.doi.org/10.1139/m93-068] [PMID: 8330259]
[53]
Freitag NE, Port GC, Miner MD. Listeria monocytogenes-from saprophyte to intracellular pathogen. Nat Rev Microbiol 2009; 7(9): 623-8.
[http://dx.doi.org/10.1038/nrmicro2171] [PMID: 19648949]
[54]
Light SH, Su L, Rivera-Lugo R, et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 2018; 562(7725): 140-4.
[http://dx.doi.org/10.1038/s41586-018-0498-z] [PMID: 30209391]
[55]
Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 2017; 46(1): 77-89.
[http://dx.doi.org/10.1016/j.gtc.2016.09.007] [PMID: 28164854]
[56]
Saha S, Tariq R, Tosh PK, Pardi DS, Khanna S. Fecal microbiota transplantation for eradicating carriage of multidrug-resistant organisms: a systematic review. Clin Microbiol Infect 2019; 25(8): 30158-2.
[57]
Cheng HY, Ning MX, Chen DK, Ma WT. Interactions between the gut microbiota and the host innate immune response against pathogens. Front Immunol 2019; 10: 607.www.frontiersin.org/articles/10.3389/fimmu.2019.00607/fu ll10.3389/fimmu.2019.00607
[58]
Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol 2017; 35: 119-47.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052424] [PMID: 28125357]
[59]
Li DY, Tang WHW. Gut Microbiota and Atherosclerosis. Curr Atheroscler Rep 2017; 19(10): 39.
[http://dx.doi.org/10.1007/s11883-017-0675-9] [PMID: 28842845]
[60]
Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2017; 2(10): 747-56.
[http://dx.doi.org/10.1016/S2468-1253(17)30147-4] [PMID: 28844808]
[61]
BordaloTonucci L. Dos Santos KM, De Luces Fortes Ferreira CL, Ribeiro SM, De Oliveira LL, Martino HS. Gut microbiota and probiotics: focus on diabetes mellitus. Crit Rev Food Sci Nutr 2017; 57: 2296-309.
[62]
Roubalová R, Procházková P, Papežová H, Smitka K, Bilej M, Tlaskalová-Hogenová H. Anorexia nervosa: gut microbiota-immune-brain interactions. Clin Nutr 2019; pii S0261- 5614(19): 30137-2.
[63]
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics 2018; 15(1): 36-59.
[http://dx.doi.org/10.1007/s13311-017-0585-0] [PMID: 29134359]
[64]
Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016; 324: 131-9.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.013] [PMID: 26964681]
[65]
Mangiola F, Ianiro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. Gut microbiota in autism and mood disorders. World J Gastroenterol 2016; 22(1): 361-8.
[http://dx.doi.org/10.3748/wjg.v22.i1.361] [PMID: 26755882]
[66]
Ding HT, Taur Y, Walkup JT. Gut microbiota and autism: key concepts and findings. J Autism Dev Disord 2017; 47(2): 480-9.
[http://dx.doi.org/10.1007/s10803-016-2960-9] [PMID: 27882443]
[67]
Caso JR, Balanzá-Martínez V, Palomo T, García-Bueno B. The microbiota and gut-brain axis: contributions to the immunopathogenesis of schizophrenia. Curr Pharm Des 2016; 22(40): 6122-33.
[http://dx.doi.org/10.2174/1381612822666160906160911] [PMID: 27604609]
[68]
Kanji S, Fonseka TM, Marshe VS, Sriretnakumar V, Hahn MK, Müller DJ. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur Arch Psychiatry Clin Neurosci 2018; 268(1): 3-15.
[http://dx.doi.org/10.1007/s00406-017-0820-z] [PMID: 28624847]
[69]
Donazar-Ezcurra M, López-Del Burgo C, Bes-Rastrollo M. Primary prevention of gestational diabetes mellitus through nutritional factors: a systematic review. BMC Pregnancy Childbirth 2017; 17(1): 30.
[http://dx.doi.org/10.1186/s12884-016-1205-4] [PMID: 28086820]
[70]
Slawson DL, Fitzgerald N, Morgan KT. Position of the Academy of nutrition and dietetics: the role of nutrition in health promotion and chronic disease prevention. J Acad Nutr Diet 2013; 113(7): 972-9.
[http://dx.doi.org/10.1016/j.jand.2013.05.005] [PMID: 23790411]
[71]
Manning TS, Gibson GR. Microbial-gut interactions in health and disease. Prebiotics. Best Pract Res Clin Gastroenterol 2004; 18(2): 287-98.
[http://dx.doi.org/10.1016/j.bpg.2003.10.008] [PMID: 15123070]
[72]
do Carmo MM, Walker JC, Novello D, et al. Polydextrose: physiological punction, and effects on health. Nutrients 2016; 8(9)E553
[http://dx.doi.org/10.3390/nu8090553] [PMID: 27618093]
[73]
Legette LL, Lee W, Martin BR, Story JA, Campbell JK, Weaver CM. Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci 2012; 77(4): H88-94.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02612.x] [PMID: 22394255]
[74]
Santos EF, Tsuboi KH, Araújo MR, et al. Ingestion of polydextrose increase the iron absorption in rats submitted to partial gastrectomy. Acta Cir Bras 2010; 25(6): 518-24.
[http://dx.doi.org/10.1590/S0102-86502010000600011] [PMID: 21120284]
[75]
Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004; 17(2): 259-75.
[http://dx.doi.org/10.1079/NRR200479] [PMID: 19079930]
[76]
Florowska A, Krygier K, Florowski T, Dłużewska E. Prebiotics as functional food ingredients preventing diet-related diseases. Food Funct 2016; 7(5): 2147-55.
[http://dx.doi.org/10.1039/C5FO01459J] [PMID: 26961814]
[77]
Notay M, Foolad N, Vaughn AR, Sivamani RK. Probiotics, prebiotics, and synbiotics for the treatment and prevention of adult dermatological diseases. Am J Clin Dermatol 2017; 18(6): 721-32.
[http://dx.doi.org/10.1007/s40257-017-0300-2] [PMID: 28681230]
[78]
Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 2013; 5(4): 1417-35.
[http://dx.doi.org/10.3390/nu5041417] [PMID: 23609775]
[79]
Lefranc-Millot C, Guérin-Deremaux L, Wils D, Neut C, Miller LE, Saniez-Degrave MH. Impact of a resistant dextrin on intestinal ecology: how altering the digestive ecosystem with NUTRIOSE®, a soluble fibre with prebiotic properties, may be beneficial for health. J Int Med Res 2012; 40(1): 211-24.
[http://dx.doi.org/10.1177/147323001204000122] [PMID: 22429361]
[80]
Witaicenis A, Fruet AC, Salem L, Di Stasi LC. Dietary polydextrose prevents inflammatory bowel disease in trinitrobenzenesulfonic acid model of rat colitis. J Med Food 2010; 13(6): 1391-6.
[http://dx.doi.org/10.1089/jmf.2009.0275] [PMID: 21091252]
[81]
Peuranen S, Tiihonen K, Apajalahti J, Kettunen A, Saarinen M, Rautonen N. Combination of polydextrose and lactitol affects microbial ecosystem and immune responses in rat gastrointestinal tract. Br J Nutr 2004; 91(6): 905-14.
[http://dx.doi.org/10.1079/BJN20041114] [PMID: 15182394]
[82]
Yamamoto Y, To M, Hayashi T, et al. Intake of indigestible carbohydrates influences IgA response and polymeric Ig receptor expression in the rat submandibular gland. Br J Nutr 2015; 113(12): 1895-902.
[http://dx.doi.org/10.1017/S0007114515001403] [PMID: 25999025]
[83]
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54(9): 2325-40.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[84]
Blundell JE, Lawton CL, Cotton JR, Macdiarmid JI. Control of human appetite: implications for the intake of dietary fat. Annu Rev Nutr 1996; 16: 285-319.
[http://dx.doi.org/10.1146/annurev.nu.16.070196.001441] [PMID: 8839929]
[85]
Stenman LK, Waget A, Garret C, et al. Probiotic B420 and prebiotic polydextrose improve efficacy of antidiabetic drugs in mice. Diabetol Metab Syndr 2015; 7: 75.
[http://dx.doi.org/10.1186/s13098-015-0075-7] [PMID: 26366205]
[86]
Konings E, Schoffelen PF, Stegen J, Blaak EE. Effect of polydextrose and soluble maize fibre on energy metabolism, metabolic profile and appetite control in overweight men and women. Br J Nutr 2014; 111(1): 111-21.
[http://dx.doi.org/10.1017/S0007114513002183] [PMID: 23880340]
[87]
Albarracín M, Weisstaub AR, Zuleta A, Mandalunis P, González RJ, Drago SR. Effects of extruded whole maize, polydextrose and cellulose as sources of fibre on calcium bioavailability and metabolic parameters of growing Wistar rats. Food Funct 2014; 5(4): 804-10.
[http://dx.doi.org/10.1039/c3fo60424a] [PMID: 24577488]
[88]
Hengst C, Ptok S, Roessler A, Fechner A, Jahreis G. Effects of polydextrose supplementation on different faecal parameters in healthy volunteers. Int J Food Sci Nutr 2009; 60(Suppl. 5): 96-105.
[http://dx.doi.org/10.1080/09637480802526760] [PMID: 19107626]
[89]
Costabile A, Fava F, Röytiö H, et al. Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr 2012; 108(3): 471-81.
[http://dx.doi.org/10.1017/S0007114511005782] [PMID: 22099384]
[90]
Magro DO, de Oliveira LM, Bernasconi I, et al. Effect of yogurt containing polydextrose, Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019: a randomized, double-blind, controlled study inchronic constipation. Nutr J 2014; 13: 75.
[http://dx.doi.org/10.1186/1475-2891-13-75] [PMID: 25056655]
[91]
Ramabadran K, Bansinath M, Turndorf H, Puig MM. Streptozotocin-diabetes attenuates α 2-adrenoceptor agonist-induced delay in small intestinal transit in mice. J Auton Pharmacol 1990; 10(3): 163-71.
[http://dx.doi.org/10.1111/j.1474-8673.1990.tb00015.x] [PMID: 1974257]
[92]
el-Neshawy AA, el-Shafie NM. Quality of zabadi made from cow’s milk fortified with whey and soy proteins. Nahrung 1988; 32(10): 939-43.
[http://dx.doi.org/10.1002/food.19880321005] [PMID: 3244370]
[93]
Steinkraus KH. Handbook of Indigenous Fermented Foods Revised and Expanded. 1996.
[94]
Prajapati JB, Nair BM. The History of Fermented Foods.Handbook of Fermented Functional Foods . 2003; pp. 1-27.
[95]
Kahala M, Mäki M, Lehtovaara A, et al. Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. J Appl Microbiol 2008; 105(6): 1929-38.
[http://dx.doi.org/10.1111/j.1365-2672.2008.03952.x] [PMID: 19120639]
[96]
Yıldız F. Overview of yogurt and other fermented dairy products. Development and manufacture of yogurt and other functional dairy products 2010; 1-44.
[97]
Panesar PS. Fermented dairy products: starter cultures and potential nutritional benefits. Food Nutr Sci 2011; 2: 47-51.
[http://dx.doi.org/10.4236/fns.2011.21006]
[98]
Saleh FA. Isolation and identification of microorganisms and antibacterial activity of Laban Zeer, an Egyptian traditional fermented milk product. Sci J Microbiol 2013; 2: 31-42.
[99]
Shah NP. Novel dairy probiotic products. Adv Probiotic Technol 2015; pp. 338-55.
[100]
Gadallah MGE, Hassan MFY. Quality properties of Kishk (a dried fermented cereal-milk mixture) prepared from different raw materials. J Saudi Soc Agric Sci 2019; 18: 95-101.
[http://dx.doi.org/10.1016/j.jssas.2017.02.003]
[101]
Sengun IY, Nielsen DS, Karapinar M, Jakobsen M. Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food. Int J Food Microbiol 2009; 135(2): 105-11.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.033] [PMID: 19703719]
[102]
Gasta MG, Williamson CB, Gossard CM, et al. Probiotics and disease: a comprehensive summary-part 4, infectious diseases. Integr Med (Encinitas) 2017; 16(2): 28-38.
[PMID: 30881235]
[103]
Gasta MG, Gossard CM, Williamson CB, et al. Probiotics and disease: a comprehensive summary-part 5, respiratory conditions of the ears, nose, and throat. Integr Med (Encinitas) 2017; 16(3): 28-40.
[PMID: 30881245]
[104]
Dolan KE, Pizano JM, Gossard CM, et al. Probiotics and disease: a comprehensive summary-part 6, skin health. Integr Med (Encinitas) 2017; 16(4): 32-41.
[PMID: 30881255]
[105]
Williamson CB, Burns CM, Gossard CM, et al. Probiotics and disease: a comprehensive summary-part 3, cardiometabolic disease and fatigue syndromes. Integr Med (Encinitas) 2017; 16(1): 30-41.
[PMID: 28223906]
[106]
Dolan KE, Finley HJ, Burns CM, et al. Probiotics and disease: a comprehensive summary-part 1, mental and neurological health. Integr Med (Encinitas) 2016; 15(5): 46-58.
[PMID: 27980495]
[107]
Tian R, Yang W, Xue Q, et al. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. Eur J Pharmacol 2016; 771: 84-92.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.021] [PMID: 26688570]
[108]
Shi Y, Liang XC, Zhang H, Sun Q, Wu QL, Qu L. Combination of quercetin, cinnamaldehyde and hirudin protects rat dorsal root ganglion neurons against high glucose-induced injury through Nrf-2/HO-1 activation and NF-κB inhibition. Chin J Integr Med 2017; 23(9): 663-71.
[http://dx.doi.org/10.1007/s11655-017-2405-0] [PMID: 28861887]
[109]
Naseri R, Farzaei F, Fakhri S, et al. Polyphenols for diabetes associated neuropathy: Pharmacological targets and clinical perspective. Daru 2019.
[http://dx.doi.org/10.1007/s40199-019-00289-w] [PMID: 31352568]
[110]
Icel E, Icel A, Uçak T, et al. The effects of lycopene on alloxan induced diabetic optic neuropathy. Cutan Ocul Toxicol 2019; 38(1): 88-92.
[http://dx.doi.org/10.1080/15569527.2018.1530258] [PMID: 30277087]
[111]
Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 2009; 1790(10): 1149-60.
[http://dx.doi.org/10.1016/j.bbagen.2009.07.026] [PMID: 19664690]
[112]
Ferreira PEB, Beraldi EJ, Borges SC, Natali MRM, Buttow NC. Resveratrol promotes neuroprotection and attenuates oxidative and nitrosative stress in the small intestine in diabetic rats. Biomed Pharmacother 2018; 105: 724-33.
[http://dx.doi.org/10.1016/j.biopha.2018.06.030] [PMID: 29906751]
[113]
Verma S, Dey A, Kumar V. Potential of Curcuma longa and Withania somnifera for diabetes and associated comorbidities. Herbs for diabetes and neurological disease management: research and advancements oakville: CRC/Apple Academic Press 2018; 117-49.
[114]
Surh YJ, Lee SS. Capsaicin in hot chili pepper: carcinogen, co-carcinogen or anticarcinogen? Food Chem Toxicol 1996; 34(3): 313-6.
[http://dx.doi.org/10.1016/0278-6915(95)00108-5] [PMID: 8621114]
[115]
Niu Y, Li J, Peng R, Zhao X, Wu J, Tang Q. Low vitamin D is associated with diabetes peripheral neuropathy in older but not in young and middle-aged patients. Diabetes Metab Res Rev 2019; 35(6)e3162
[http://dx.doi.org/10.1002/dmrr.3162] [PMID: 30931541]
[116]
Mottaghi T, Khorvash F, Maracy M, Bellissimo N, Askari G. Effect of folic acid supplementation on nerve conduction velocity in diabetic polyneuropathy patients. Neurol Res 2019; 41(4): 364-8.
[http://dx.doi.org/10.1080/01616412.2019.1565180] [PMID: 30730785]
[117]
Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997; 20(4): 537-44.
[http://dx.doi.org/10.2337/diacare.20.4.537] [PMID: 9096977]
[118]
Esposito K, Maiorino MI, Ceriello A, Giugliano D. Prevention and control of type 2 diabetes by Mediterranean diet: a systematic review. Diabetes Res Clin Pract 2010; 89(2): 97-102.
[http://dx.doi.org/10.1016/j.diabres.2010.04.019] [PMID: 20546959]
[119]
Bloomfield HE, Koeller E, Greer N, MacDonald R, Kane R, Wilt TJ. Effects on health outcomes of a Mediterranean diet with no restriction on fat intake: a systematic review and meta-analysis. Ann Intern Med 2016; 165(7): 491-500.
[http://dx.doi.org/10.7326/M16-0361] [PMID: 27428849]
[120]
Powell-Tuck J. Nutritional interventions in critical illness. Proc Nutr Soc 2007; 66(1): 16-24.
[http://dx.doi.org/10.1017/S0029665107005253] [PMID: 17343768]
[121]
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57(6): 1470-81.
[http://dx.doi.org/10.2337/db07-1403] [PMID: 18305141]
[122]
Patterson E, Ryan PM, Cryan JF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J 2016; 92(1087): 286-300.
[http://dx.doi.org/10.1136/postgradmedj-2015-133285] [PMID: 26912499]
[123]
Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil 2014; 26(5): 611-24.
[http://dx.doi.org/10.1111/nmo.12330] [PMID: 24661628]
[124]
Leustean AM, Ciocoiu M, Sava A, et al. Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications. J Diabetes Res 2018; 20185205126
[http://dx.doi.org/10.1155/2018/5205126] [PMID: 30539026]
[125]
Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes 2018; 67(9): 1867-79.
[http://dx.doi.org/10.2337/db18-0158] [PMID: 29712667]
[126]
Collier A, McLaren J, Godwin J, Bal A. Is Clostridium difficile associated with the ‘4C’ antibiotics? A retrospective observational study in diabetic foot ulcer patients. Int J Clin Pract 2014; 68(5): 628-32.
[http://dx.doi.org/10.1111/ijcp.12347] [PMID: 24499256]
[127]
Ito K, Enomoto H. Retrograde transport of neurotrophic factor signaling: implications in neuronal development and pathogenesis. J Biochem 2016; 160(2): 77-85.
[http://dx.doi.org/10.1093/jb/mvw037] [PMID: 27318359]
[128]
Azizi SA, Azizi SA. Synucleinopathies in neurodegenerative diseases: Accomplices, an inside job and selective vulnerability. Neurosci Lett 2018; 672: 150-2.
[http://dx.doi.org/10.1016/j.neulet.2017.12.003] [PMID: 29217261]
[129]
Caleo M, Restani L. Direct central nervous system effects of botulinum neurotoxin. Toxicon 2018; 147: 68-72.
[http://dx.doi.org/10.1016/j.toxicon.2017.10.027] [PMID: 29111119]
[130]
Bailey CJ. Metformin: historical overview. Diabetologia 2017; 60(9): 1566-76.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[131]
Bever BO. Oral hypoglycaemic plants in West Africa. J Ethnopharmacol 1980; 2(2): 119-27.
[http://dx.doi.org/10.1016/0378-8741(80)90005-7] [PMID: 7005546]
[132]
Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989; 12(8): 553-64.
[http://dx.doi.org/10.2337/diacare.12.8.553] [PMID: 2673695]
[133]
Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine 1995; 2(2): 137-89.
[http://dx.doi.org/10.1016/S0944-7113(11)80059-0] [PMID: 23196156]
[134]
Ingle-Jadav P, Angolkar TR, Kaur G. Diabetes and phytopharmaceuticals: translational pharmacology perspective. herbs for diabetes and neurological disease management: research and advancements Oakville: CRC/Apple Academic Press 2018; 201-3.
[135]
Hamza N, Berke B, Umar A, Cheze C, Gin H, Moore N. A review of Algerian medicinal plants used in the treatment of diabetes. J Ethnopharmacol 2019; 238111841
[http://dx.doi.org/10.1016/j.jep.2019.111841] [PMID: 30959140]
[136]
Bone K, Mills S. Principles and practice of phytotherapy: modern herbal medicine. Elsevier 2013.
[137]
Gruenwald J, Brendler T, Jaenicke C. PDR for herbal medicines. 4th ed. 2007.
[138]
Öztürk Y. Obesity, diabetes and metabolic syndrome in terms of preventive medicine and healthcare. J Obes Weight Loss Ther 2015; 5: 44.
[http://dx.doi.org/10.4172/2165-7904.S1.013]
[139]
do Nascimento BonatoPanizzon CP, de Miranda Neto MH, Ramalho FV, Longhini R, de Mello JCP, Zanoni JN. Ethyl acetate fraction from Trichilia catigua confers partial neuroprotection in components of the enteric innervation of the jejunumin diabetic rats. Cell Physiol Biochem 2019; 53(1): 76-86.
[http://dx.doi.org/10.33594/000000122] [PMID: 31192545]
[140]
Pengzong Z, Yuanmin L, Xiaoming X, et al. Wound healing potential of the standardized extract of Boswellia serrata on experimental diabetic foot ulcer via inhibitionof inflammatory, angiogenetic and apoptotic markers. Planta Med 2019; 85(8): 657-69.
[http://dx.doi.org/10.1055/a-0881-3000] [PMID: 30909313]
[141]
Czerwińska ME, Gąsińska E, Leśniak A, et al. Inhibitory effect of Ligustrum vulgare leaf extract on the development of neuropathic pain in a streptozotocin-induced rat model of diabetes. Phytomedicine 2018; 49: 75-82.
[http://dx.doi.org/10.1016/j.phymed.2018.06.006] [PMID: 30217264]
[142]
Rasoulian B, Hajializadeh Z, Esmaeili-Mahani S, Rashidipour M, Fatemi I, Kaeidi A. Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy. J Physiol Sci 2019; 69(1): 57-64.
[http://dx.doi.org/10.1007/s12576-018-0620-x] [PMID: 29754274]
[143]
Kishore L, Kaur N, Singh R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology 2018; 26(4): 993-1003.
[http://dx.doi.org/10.1007/s10787-017-0416-2] [PMID: 29159712]
[144]
Nasiry D, Khalatbary AR, Ahmadvand H. TalebpourAmiri F, Akbari E. Protectiveeffects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats. BMC Complement Altern Med 2017; 17(1): 476.
[http://dx.doi.org/10.1186/s12906-017-1983-x] [PMID: 28969623]
[145]
Kaur N, Kishore L, Singh R. Chromane isolated from leaves of Dillenia indica improves the neuronal dysfunction in STZ-induced diabetic neuropathy. J Ethnopharmacol 2017; 206: 19-30.
[http://dx.doi.org/10.1016/j.jep.2017.05.018] [PMID: 28506898]
[146]
Soliman AM, Teoh SL, Ghafar NA, Das S. Molecular concept of diabetic wound healing: Effective role of herbal remedies. Mini Rev Med Chem 2019; 19(5): 381-94.
[http://dx.doi.org/10.2174/1389557518666181025155204] [PMID: 30360709]
[147]
Farsak M, Özdağli G, Özmüş D, et al. Effects of Hypericum perforatum on an experimentally induced diabetic wound in a rat rodel. Wounds 2017; 29: E10-7.
[PMID: 28272017]
[148]
Oztürk N, Korkmaz S, Oztürk Y. Wound-healing activity of St. John’s Wort (Hypericum perforatum L.) on chicken embryonic fibroblasts. J Ethnopharmacol 2007; 111(1): 33-9.
[http://dx.doi.org/10.1016/j.jep.2006.10.029] [PMID: 17156955]
[149]
Dikmen M, Oztürk Y, Sagratini G, Ricciutelli M, Vittori S, Maggi F. Evaluation of the wound healing potentials of two subspecies of Hypericum perforatum on cultured NIH3T3 fibroblasts. Phytother Res 2011; 25(2): 208-14.
[PMID: 20632305]
[150]
Can ÖD, Öztürk Y, Öztürk N, et al. Effects of treatment with St. John’s Wort on blood glucose levels and pain perceptions of streptozotocin-diabetic rats. Fitoterapia 2011; 82(4): 576-84.
[http://dx.doi.org/10.1016/j.fitote.2011.01.008] [PMID: 21262331]
[151]
Öztürk Y. Role of St.-John’s Wort (Hypericum perforatum L.) in the management of diabetes and neurological disorders. Herbs for diabetes and neurological disease management: Research and Advancements Oakville: CRC/Apple Academic Press 2018; 1-21.
[152]
Khoo HE, Ng HS, Yap WS, Goh HJH, Yim HS. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants 2019; 8(4)E85
[http://dx.doi.org/10.3390/antiox8040085] [PMID: 30986936]
[153]
Carlos-Reyes Á, López-González JS, Meneses-Flores M, et al. Dietary dompounds as epigenetic modulating agents in cancer. Front Genet 2019; 10: 79.
[http://dx.doi.org/10.3389/fgene.2019.00079] [PMID: 30881375]
[154]
Pisoschi AM, Pop A, Cimpeanu C, Predoi G. Antioxidant capacity determination in plants and plant-derived products: a review. Oxid Med Cell Longev 2016; 20169130976
[http://dx.doi.org/10.1155/2016/9130976] [PMID: 28044094]
[155]
Alché JD. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol 2019; 7101136
[http://dx.doi.org/10.1016/j.redox.2019.101136] [PMID: 30772285]
[156]
Maritim AC, Sanders RA, Watkins JB III. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17(1): 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[157]
Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem 2017; 118(11): 3577-85.
[http://dx.doi.org/10.1002/jcb.26097] [PMID: 28460155]
[158]
Calderon GD, Juarez OH, Hernandez GE, Punzo SM, De la Cruz ZD. Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond) 2017; 31(8): 1122-30.
[http://dx.doi.org/10.1038/eye.2017.64] [PMID: 28452994]
[159]
Herder C, Roden M, Ziegler D. Novel insights into sensorimotor and cardiovascular autonomic neuropathy from recent-onset diabetes and population-based cohorts. Trends Endocrinol Metab 2019; 30(5): 286-98.
[http://dx.doi.org/10.1016/j.tem.2019.02.007] [PMID: 30935671]
[160]
Victorio JA, Davel AP. Perivascular adipose tissue oxidative stress on the pathophysiology of cardiometabolic diseases. Curr Hypertens Rev 2019.
[http://dx.doi.org/10.2174/1573402115666190410153634] [PMID: 30968777]
[161]
Réus GZ, Carlessi AS, Silva RH, Ceretta LB, Quevedo J. Relationship of oxidative stress as a link between Diabetes Mellitus and major depressive disorder. Oxid Med Cell Longev 2019; 20198637970
[http://dx.doi.org/10.1155/2019/8637970] [PMID: 30944699]
[162]
Lutz M, Fuentes E, Ávila F, Alarcón M, Palomo I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 2019; 24(2)E366
[http://dx.doi.org/10.3390/molecules24020366] [PMID: 30669612]
[163]
Öztürk N. Phenolic composition and antioxidant activity of the different extracts from Thymus longicaulis C Presl. subsp. longicaulis var. longicaulis and T. longicaulis C. Presl. subsp. longicaulis var. subisophyllus growing in Turkey. Pak J Pharm Sci 2015; 28(2): 465-72.
[PMID: 25730781]
[164]
Agar OT, Dikmen M, Öztürk N, Yilmaz MA, Temel H, Türkmenoğlu FP. Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules 2015; 20(10): 17976-8000.
[http://dx.doi.org/10.3390/molecules201017976] [PMID: 26437391]
[165]
Dikmen M, Öztürk N, Öztürk Y. The antioxidant potency of Punica granatum L. Fruit peel reduces cell proliferation and induces apoptosis on breast cancer. J Med Food 2011; 14(12): 1638-46.
[http://dx.doi.org/10.1089/jmf.2011.0062] [PMID: 21861726]
[166]
Öztürk N, Tunçel M. Assessment of phenolic acid content and in vitro antiradical characteristics of hawthorn. J Med Food 2011; 14(6): 664-9.
[http://dx.doi.org/10.1089/jmf.2010.0063] [PMID: 21554133]
[167]
Orhan IE, Senol FS, Ozturk N, Celik SA, Pulur A, Kan Y. Phytochemical contents and enzyme inhibitory and antioxidant properties of Anethum graveolens L. (dill) samples cultivated under organic and conventional agricultural conditions. Food Chem Toxicol 2013; 59: 96-103.
[http://dx.doi.org/10.1016/j.fct.2013.05.053] [PMID: 23764360]
[168]
Sagratini G, Ricciutelli M, Vittori S, Oztürk N, Oztürk Y, Maggi F. Phytochemical and antioxidant analysis of eight Hypericum taxa from Central Italy. Fitoterapia 2008; 79(3): 210-3.
[http://dx.doi.org/10.1016/j.fitote.2007.11.011] [PMID: 18178326]
[169]
Mao XY, Jin MZ, Chen JF, Zhou HH, Jin WL. Live or let die: Neuroprotective and anti-cancer effects of nutraceutical antioxidants. Pharmacol Ther 2018; 183: 137-51.
[http://dx.doi.org/10.1016/j.pharmthera.2017.10.012] [PMID: 29055715]
[170]
Mustafa AM, Maggi F, Papa F, Kaya E, Dikmen M, Öztürk Y. Isofuranodiene: A neuritogenic compound isolated from wild celery (Smyrnium olusatrum L., Apiaceae). Food Chem 2016; 192: 782-7.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.079] [PMID: 26304411]
[171]
Dikmen M, Kaya-Tilki E, Engür S, Öztürk Y. Neuritogenic Activity of epigallocatechin gallate and curcumin combination on rat adrenal pheochromocytoma cells. Fresenius Environ Bull 2017; 26: 4726-33.
[172]
Poolsup N, Suksomboon N, Kurnianta PDM, Deawjaroen K. Effects of curcumin on glycemic control and lipid profile in prediabetes and type 2 diabetes mellitus: a systematic review and meta-analysis. PLoS One 2019; 14(4)e0215840
[http://dx.doi.org/10.1371/journal.pone.0215840] [PMID: 31013312]
[173]
Azhdari M, Karandish M, Mansoori A. Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2019; 33(5): 1289-301.
[http://dx.doi.org/10.1002/ptr.6323] [PMID: 30941814]
[174]
Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon SH, Yang SJ. Diabetes and Alzheimer’s disease: mechanisms and nutritional aspects. Clin Nutr Res 2018; 7(4): 229-40.
[http://dx.doi.org/10.7762/cnr.2018.7.4.229] [PMID: 30406052]
[175]
Sun J, Chen F, Braun C, et al. Role of curcumin in the management of pathological pain. Phytomedicine 2018; 48: 129-40.
[http://dx.doi.org/10.1016/j.phymed.2018.04.045] [PMID: 30195871]
[176]
Lopresti AL. Curcumin for neuropsychiatric disorders: a review of in vitro, animal and human studies. J Psychopharmacol (Oxford) 2017; 31(3): 287-302.
[http://dx.doi.org/10.1177/0269881116686883] [PMID: 28135888]
[177]
Ferreira MA, Silva DM, de Morais AC Jr, Mota JF, Botelho PB. Therapeutic potential of green tea on risk factors for type 2 diabetes in obese adults - a review. Obes Rev 2016; 17(12): 1316-28.
[http://dx.doi.org/10.1111/obr.12452] [PMID: 27443447]
[178]
Casanova E, Salvadó J, Crescenti A, Gibert-Ramos A. Epigallocatechin gallate modulates muscle homeostasis in type 2 diabetes and obesity by targeting energetic and redox pathways: a narrative review. Int J Mol Sci 2019; 20(3)E532
[http://dx.doi.org/10.3390/ijms20030532] [PMID: 30691224]
[179]
Raposo D, Morgado C, Pereira-Terra P, Tavares I. Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Res Bull 2015; 110: 68-75.
[http://dx.doi.org/10.1016/j.brainresbull.2014.12.004] [PMID: 25522867]
[180]
Baluchnejadmojarad T, Roghani M. Chronic oral epigallocatechin-gallate alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iran J Pharm Res 2012; 11(4): 1243-53.
[PMID: 24250559]
[181]
Amit T, Avramovich-Tirosh Y, Youdim MB, Mandel S. Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. FASEB J 2008; 22(5): 1296-305.
[http://dx.doi.org/10.1096/fj.07-8627rev] [PMID: 18048580]
[182]
Loftis JM, Wilhelm CJ, Huckans M. Effect of epigallocatechin gallate supplementation in schizophrenia and bipolar disorder: an 8-week, randomized, double-blind, placebo-controlled study. Ther Adv Psychopharmacol 2013; 3(1): 21-7.
[http://dx.doi.org/10.1177/2045125312464103] [PMID: 23983989]
[183]
Lee B, Shim I, Lee H, Hahm DH. Effects of epigallocatechin gallate on behavioral and cognitive impairments, hypothalamic-pituitary-adrenal axis dysfunction, and alternations in hippocampal BDNF expression under single prolonged stress. J Med Food 2018; 21(10): 979-89.
[http://dx.doi.org/10.1089/jmf.2017.4161] [PMID: 30273101]
[184]
Abdel-Moneim A, Yousef AI, Abd El-Twab SM, Abdel Reheim ES, Ashour MB. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab Brain Dis 2017; 32(4): 1279-86.
[http://dx.doi.org/10.1007/s11011-017-0039-8] [PMID: 28573601]
[185]
Mustafa AM, Maggi F, Caprioli G, et al. Evaluation of neuritogenic activity of cultivated, wild and commercial roots of Gentiana lutea L. J Funct Foods 2015; 19: 164-73.
[http://dx.doi.org/10.1016/j.jff.2015.09.018]
[186]
Mustafa AM, Maggi F, Öztürk N, et al. Chemical and biological analysis of the by-product obtained by processing Gentiana lutea L. and other herbs during production of bitter liqueurs. Ind Crops Prod 2016; 80: 131-40.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.041]
[187]
Oztürk N, Başer KH, Aydin S, Oztürk Y, Caliş I. Effects of Gentiana lutea ssp. symphyandra on the central nervous system in mice. Phytother Res 2002; 16(7): 627-31.
[http://dx.doi.org/10.1002/ptr.998] [PMID: 12410542]
[188]
Akileshwari C, Muthenna P, Nastasijević B, Joksić G, Petrash JM, Reddy GB. Inhibition of aldose reductase by Gentiana lutea extracts. Exp Diabetes Res 2012; 2012147965
[http://dx.doi.org/10.1155/2012/147965] [PMID: 22844269]
[189]
Alam F, Shafique Z, Amjad ST, Bin Asad MHH. Enzymes inhibitors from natural sources with antidiabetic activity: a review. Phytother Res 2019; 33(1): 41-54.
[http://dx.doi.org/10.1002/ptr.6211] [PMID: 30417583]
[190]
Yang XD, Fang PF, Xiang DX, Yang YY. Topical treatments for diabetic neuropathic pain. Exp Ther Med 2019; 17(3): 1963-76.
[PMID: 30783472]
[191]
Darivemula S, Nagoor K, Patan SK, Reddy NB, Deepthi CS, Chittooru CS. Prevalence and its associated determinants of Diabetic Peripheral Neuropathy (DPN) in individuals having type-2 diabetes mellitus in rural South India. Indian J Community Med 2019; 44(2): 88-91.
[PMID: 31333282]
[192]
Rezaeiamiri E, Bahramsoltani R, Rahimi R. Plant-derived natural agents asdietary supplements for the regulation of glycosylated hemoglobin: A review of clinical trials. Clin Nutr 2019; pii: S0261- 5614(19): 30058-5.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy