Review Article

The Use of Chemical Compounds to Identify the Regulatory Mechanisms of Vertebrate Circadian Clocks

Author(s): Yoshimi Okamoto-Uchida, Akari Nishimura, Junko Izawa, Atsuhiko Hattori, Nobuo Suzuki and Jun Hirayama*

Volume 21, Issue 5, 2020

Page: [425 - 432] Pages: 8

DOI: 10.2174/1389450120666190926143120

Price: $65

conference banner
Abstract

Circadian clocks are intrinsic, time-tracking processes that confer a survival advantage on an organism. Under natural conditions, they follow approximately a 24-h day, modulated by environmental time cues, such as light, to maximize an organism’s physiological efficiency. The exact timing of this rhythm is established by cell-autonomous oscillators called cellular clocks, which are controlled by transcription–translation negative feedback loops. Studies of cell-based systems and wholeanimal models have utilized a pharmacological approach in which chemical compounds are used to identify molecular mechanisms capable of establishing and maintaining cellular clocks, such as posttranslational modifications of cellular clock regulators, chromatin remodeling of cellular clock target genes’ promoters, and stability control of cellular clock components. In addition, studies with chemical compounds have contributed to the characterization of light-signaling pathways and their impact on the cellular clock. Here, the use of chemical compounds to study the molecular, cellular, and behavioral aspects of the vertebrate circadian clock system is described.

Keywords: Circadian clock, cellular clock, clock protein, transcription, light, zebrafish.

Next »
Graphical Abstract
[1]
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017; 18(3): 164-79.
[http://dx.doi.org/10.1038/nrg.2016.150]. ] [PMID: 27990019]
[2]
Okamura H. Clock genes in cell clocks: roles, actions, and mysteries. J Biol Rhythms 2004; 19(5): 388-99.
[http://dx.doi.org/10.1177/0748730404269169] [PMID: 15534319]
[3]
Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418(6901): 935-41.
[http://dx.doi.org/10.1038/nature00965] [PMID: 12198538]
[4]
Dunlap JC. Molecular bases for circadian clocks. Cell 1999; 96(2): 271-90.
[http://dx.doi.org/10.1016/S0092-8674(00)80566-8] [PMID: 9988221]
[5]
Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell 2002; 111(7): 919-22.
[http://dx.doi.org/10.1016/S0092-8674(02)01225-4] [PMID: 12507418]
[6]
King DP, Takahashi JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci 2000; 23: 713-42.
[http://dx.doi.org/10.1146/annurev.neuro.23.1.713] [PMID: 10845079]
[7]
DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 2007; 10(5): 543-5.
[http://dx.doi.org/10.1038/nn1884] [PMID: 17417633]
[8]
Sahar S, Sassone-Corsi P. Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 2009; 9(12): 886-96.
[http://dx.doi.org/10.1038/nrc2747] [PMID: 19935677]
[9]
Idda ML, Bertolucci C, Vallone D, Gothilf Y, Sánchez-Vázquez FJ, Foulkes NS. Circadian clocks: lessons from fish. Prog Brain Res 2012; 199: 41-57.
[http://dx.doi.org/10.1016/B978-0-444-59427-3.00003-4] [PMID: 22877658]
[10]
Frøland Steindal IA, Whitmore D. Circadian clocks in fish-what have we learned so far? Biology (Basel) 2019; 8(1)E17
[http://dx.doi.org/10.3390/biology8010017] [PMID: 30893815]
[11]
Whitmore D, Foulkes NS, Strähle U, Sassone-Corsi P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1998; 1(8): 701-7.
[http://dx.doi.org/10.1038/3703] [PMID: 10196586]
[12]
Tamai TK, Carr AJ, Whitmore D. Zebrafish circadian clocks: cells that see light. Biochem Soc Trans 2005; 33(Pt 5): 962-6.
[http://dx.doi.org/10.1042/BST0330962] [PMID: 16246021]
[13]
Whitmore D, Foulkes NS, Sassone-Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 2000; 404(6773): 87-91.
[http://dx.doi.org/10.1038/35003589] [PMID: 10716448]
[14]
Pando MP, Pinchak AB, Cermakian N, Sassone-Corsi P. A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc Natl Acad Sci USA 2001; 98(18): 10178-83.
[http://dx.doi.org/10.1073/pnas.181228598] [PMID: 11517315]
[15]
Hurd MW, Cahill GM. Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J Biol Rhythms 2002; 17(4): 307-14.
[http://dx.doi.org/10.1177/074873002129002618] [PMID: 12164247]
[16]
Hirayama J, Kaneko M, Cardone L, Cahill G, Sassone-Corsi P. Analysis of circadian rhythms in zebrafish. Methods Enzymol 2005; 393: 186-204.
[http://dx.doi.org/10.1016/S0076-6879(05)93005-X] [PMID: 15817288]
[17]
Rihel J, Prober DA, Arvanites A, et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 2010; 327(5963): 348-51.
[http://dx.doi.org/10.1126/science.1183090] [PMID: 20075256]
[18]
Blum ID, Bell B, Wu MN. Time for Bed: Genetic mechanisms mediating the circadian regulation of sleep. Trends Genet 2018; 34(5): 379-88.
[http://dx.doi.org/10.1016/j.tig.2018.01.001] [PMID: 29395381]
[19]
Mosser EA, Chiu CN, Tamai TK, et al. Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Sci Rep 2019; 9(1): 12405.
[http://dx.doi.org/10.1038/s41598-019-48914-7] [PMID: 31455847]
[20]
Hirayama J, Sassone-Corsi P. Structural and functional features of transcription factors controlling the circadian clock. Curr Opin Genet Dev 2005; 15(5): 548-56.
[http://dx.doi.org/10.1016/j.gde.2005.07.003] [PMID: 16095901]
[21]
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007; 8(2): 139-48.
[http://dx.doi.org/10.1038/nrm2106] [PMID: 17245414]
[22]
Uchida Y, Hirayama J, Nishina H. A common origin: signaling similarities in the regulation of the circadian clock and DNA damage responses. Biol Pharm Bull 2010; 33(4): 535-44.
[http://dx.doi.org/10.1248/bpb.33.535] [PMID: 20410582]
[23]
Ma YT, Luo H, Guan WJ, et al. O-GlcNAcylation of BMAL1 regulates circadian rhythms in NIH3T3 fibroblasts. Biochem Biophys Res Commun 2013; 431(3): 382-7.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.043] [PMID: 23337503]
[24]
Kaasik K, Kivimäe S, Allen JJ, et al. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 2013; 17(2): 291-302.
[http://dx.doi.org/10.1016/j.cmet.2012.12.017] [PMID: 23395175]
[25]
Li MD, Ruan HB, Hughes ME, et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 2013; 17(2): 303-10.
[http://dx.doi.org/10.1016/j.cmet.2012.12.015] [PMID: 23395176]
[26]
Chen Z, Yoo SH, Takahashi JS. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu Rev Pharmacol Toxicol 2018; 58: 231-52.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052645] [PMID: 28968186]
[27]
Lowrey PL, Shimomura K, Antoch MP, et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000; 288(5465): 483-92.
[http://dx.doi.org/10.1126/science.288.5465.483] [PMID: 10775102]
[28]
Narasimamurthy R, Hunt SR, Lu Y, et al. CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch. Proc Natl Acad Sci USA 2018; 115(23): 5986-91.
[http://dx.doi.org/10.1073/pnas.1721076115] [PMID: 29784789]
[29]
Toh KL, Jones CR, He Y, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001; 291(5506): 1040-3.
[http://dx.doi.org/10.1126/science.1057499] [PMID: 11232563]
[30]
Ebisawa T, Uchiyama M, Kajimura N, et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2001; 2(4): 342-6.
[http://dx.doi.org/10.1093/embo-reports/kve070] [PMID: 11306557]
[31]
Hirota T, Kay SA. High-throughput screening and chemical biology: new approaches for understanding circadian clock mechanisms. Chem Biol 2009; 16(9): 921-7.
[http://dx.doi.org/10.1016/j.chembiol.2009.09.002] [PMID: 19778719]
[32]
Gaspar L, Brown SA. Measuring circadian clock function in human cells. Methods Enzymol 2015; 552: 231-56.
[http://dx.doi.org/10.1016/bs.mie.2014.10.023] [PMID: 25707280]
[33]
Yagita K, Yamanaka I, Koinuma S, Shigeyoshi Y, Uchiyama Y. Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock. Acta Histochem Cytochem 2009; 42(3): 89-93.
[http://dx.doi.org/10.1267/ahc.09015] [PMID: 19617956]
[34]
Kon N, Sugiyama Y, Yoshitane H, Kameshita I, Fukada Y. Cell-based inhibitor screening identifies multiple protein kinases important for circadian clock oscillations. Commun Integr Biol 2015; 8(4)e982405
[http://dx.doi.org/10.4161/19420889.2014.982405] [PMID: 26478783]
[35]
Maier B, Wendt S, Vanselow JT, et al. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev 2009; 23(6): 708-18.
[http://dx.doi.org/10.1101/gad.512209] [PMID: 19299560]
[36]
Tamaru T, Hirayama J, Isojima Y, et al. CK2alpha phosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol 2009; 16(4): 446-8.
[http://dx.doi.org/10.1038/nsmb.1578] [PMID: 19330005]
[37]
Uchida Y, Osaki T, Yamasaki T, et al. Involvement of stress kinase mitogen-activated protein kinase kinase 7 in regulation of mammalian circadian clock. J Biol Chem 2012; 287(11): 8318-26.
[http://dx.doi.org/10.1074/jbc.M111.308908] [PMID: 22267733]
[38]
Yoshitane H, Honma S, Imamura K, et al. JNK regulates the photic response of the mammalian circadian clock. EMBO Rep 2012; 13(5): 455-61.
[http://dx.doi.org/10.1038/embor.2012.37] [PMID: 22441692]
[39]
Kon N, Yoshikawa T, Honma S, et al. CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms. Genes Dev 2014; 28(10): 1101-10.
[http://dx.doi.org/10.1101/gad.237511.114] [PMID: 24831701]
[40]
Top D, Harms E, Syed S, Adams EL, Saez L. GSK-3 and CK2 kinases converge on timeless to regulate the master clock. Cell Rep 2016; 16(2): 357-67.
[http://dx.doi.org/10.1016/j.celrep.2016.06.005] [PMID: 27346344]
[41]
Zhang EE, Liu AC, Hirota T, et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 2009; 139(1): 199-210.
[http://dx.doi.org/10.1016/j.cell.2009.08.031] [PMID: 19765810]
[42]
Hirota T, Lee JW, Lewis WG, et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol 2010; 8(12)e1000559
[http://dx.doi.org/10.1371/journal.pbio.1000559] [PMID: 21179498]
[43]
Hirota T, Lee JW, St John PC, et al. Identification of small molecule activators of cryptochrome. Science 2012; 337(6098): 1094-7.
[http://dx.doi.org/10.1126/science.1223710] [PMID: 22798407]
[44]
Oshima T, Niwa Y, Kuwata K, et al. Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Sci Adv 2019; 5(1)eaau9060
[http://dx.doi.org/10.1126/sciadv.aau9060] [PMID: 30746467]
[45]
Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006; 125(3): 497-508.
[http://dx.doi.org/10.1016/j.cell.2006.03.033] [PMID: 16678094]
[46]
Hirayama J, Sahar S, Grimaldi B, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007; 450(7172): 1086-90.
[http://dx.doi.org/10.1038/nature06394] [PMID: 18075593]
[47]
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134(2): 329-40.
[http://dx.doi.org/10.1016/j.cell.2008.07.002] [PMID: 18662547]
[48]
Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013; 153(7): 1448-60.
[http://dx.doi.org/10.1016/j.cell.2013.05.027] [PMID: 23791176]
[49]
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134(2): 317-28.
[http://dx.doi.org/10.1016/j.cell.2008.06.050] [PMID: 18662546]
[50]
Bellet MM, Nakahata Y, Boudjelal M, et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci USA 2013; 110(9): 3333-8.
[http://dx.doi.org/10.1073/pnas.1214266110] [PMID: 23341587]
[51]
Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. Circadian clock control by SUMOylation of BMAL1. Science 2005; 309(5739): 1390-4.
[http://dx.doi.org/10.1126/science.1110689] [PMID: 16109848]
[52]
Lee J, Lee Y, Lee MJ, et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol 2008; 28(19): 6056-65.
[http://dx.doi.org/10.1128/MCB.00583-08] [PMID: 18644859]
[53]
Liu AC, Welsh DK, Ko CH, et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 2007; 129(3): 605-16.
[http://dx.doi.org/10.1016/j.cell.2007.02.047] [PMID: 17482552]
[54]
Hegazi S, Lowden C, Rios Garcia J, et al. A symphony of signals: Intercellular and intracellular signaling mechanisms underlying circadian timekeeping in mice and flies. Int J Mol Sci 2019; 20(9)E2363
[http://dx.doi.org/10.3390/ijms20092363] [PMID: 31086044]
[55]
van der Horst GT, Muijtjens M, Kobayashi K, et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 1999; 398(6728): 627-30.
[http://dx.doi.org/10.1038/19323] [PMID: 10217146]
[56]
Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM. A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 2006; 50(3): 465-77.
[http://dx.doi.org/10.1016/j.neuron.2006.03.041] [PMID: 16675400]
[57]
DeBruyne JP, Weaver DR, Reppert SM. Peripheral circadian oscillators require CLOCK. Curr Biol 2007; 17(14): R538-9.
[http://dx.doi.org/10.1016/j.cub.2007.05.067] [PMID: 17637349]
[58]
Hirayama J, Alifu Y, Hamabe R, et al. The clock components Period2, Cryptochrome1a, and Cryptochrome2a function in establishing light-dependent behavioral rhythms and/or total activity levels in zebrafish. Sci Rep 2019; 9(1): 196.
[http://dx.doi.org/10.1038/s41598-018-37879-8] [PMID: 30655599]
[59]
Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 2006; 26(51): 13400-10.
[http://dx.doi.org/10.1523/JNEUROSCI.4332-06.2006] [PMID: 17182791]
[60]
Gandhi AV, Mosser EA, Oikonomou G, Prober DA. Melatonin is required for the circadian regulation of sleep. Neuron 2015; 85(6): 1193-9.
[http://dx.doi.org/10.1016/j.neuron.2015.02.016] [PMID: 25754820]
[61]
Shigeyoshi Y, Taguchi K, Yamamoto S, et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 1997; 91(7): 1043-53.
[http://dx.doi.org/10.1016/S0092-8674(00)80494-8] [PMID: 9428526]
[62]
Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zool Sci 2004; 21(4): 359-68.
[http://dx.doi.org/10.2108/zsj.21.359] [PMID: 15118222]
[63]
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79(1): 143-80.
[http://dx.doi.org/10.1152/physrev.1999.79.1.143] [PMID: 9922370]
[64]
Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK pathways in radiation responses. Oncogene 2003; 22(37): 5885-96.
[http://dx.doi.org/10.1038/sj.onc.1206701] [PMID: 12947395]
[65]
Cermakian N, Pando MP, Thompson CL, et al. Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases. Curr Biol 2002; 12(10): 844-8.
[http://dx.doi.org/10.1016/S0960-9822(02)00835-7] [PMID: 12015122]
[66]
Hirayama J, Cho S, Sassone-Corsi P. Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish. Proc Natl Acad Sci USA 2007; 104(40): 15747-52.
[http://dx.doi.org/10.1073/pnas.0705614104] [PMID: 17898172]
[67]
Hirayama J, Miyamura N, Uchida Y, et al. Common light signaling pathways controlling DNA repair and circadian clock entrainment in zebrafish. Cell Cycle 2009; 8(17): 2794-801.
[http://dx.doi.org/10.4161/cc.8.17.9447] [PMID: 19652538]
[68]
Ramos BC, Moraes MN, Poletini MO, Lima LH, Castrucci AM. From blue light to clock genes in zebrafish ZEM-2S cells. PLoS One 2014; 9(9)e106252
[http://dx.doi.org/10.1371/journal.pone.0106252] [PMID: 25184495]
[69]
Pagano C, Siauciunaite R, Idda ML, et al. Evolution shapes the responsiveness of the D-box enhancer element to light and reactive oxygen species in vertebrates. Sci Rep 2018; 8(1): 13180.
[http://dx.doi.org/10.1038/s41598-018-31570-8] [PMID: 30181539]
[70]
Mracek P, Pagano C, Fröhlich N, et al. ERK signaling regulates light-induced gene expression via d-box enhancers in a differential, wavelength-dependent manner. PLoS One 2013; 8(6)e67858
[http://dx.doi.org/10.1371/journal.pone.0067858] [PMID: 23840779]
[71]
Obrietan K, Impey S, Storm DR. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat Neurosci 1998; 1(8): 693-700.
[http://dx.doi.org/10.1038/3695] [PMID: 10196585]
[72]
Antoun G, Bouchard-Cannon P, Cheng HY. Regulation of MAPK/ERK signaling and photic entrainment of the suprachiasmatic nucleus circadian clock by Raf kinase inhibitor protein. J Neurosci 2012; 32(14): 4867-77.
[http://dx.doi.org/10.1523/JNEUROSCI.5650-11.2012] [PMID: 22492043]
[73]
Siauciunaite R, Foulkes NS, Calabrò V, Vallone D. Evolution shapes the gene expression response to oxidative stress. Int J Mol Sci 2019; 20(12)E3040
[http://dx.doi.org/10.3390/ijms20123040] [PMID: 31234431]
[74]
Osaki T, Uchida Y, Hirayama J, Nishina H. Diphenyleneiodonium chloride, an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, suppresses light-dependent induction of clock and DNA repair genes in zebrafish. Biol Pharm Bull 2011; 34(8): 1343-7.
[http://dx.doi.org/10.1248/bpb.34.1343] [PMID: 21804230]
[75]
Hockberger PE, Skimina TA, Centonze VE, et al. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Natl Acad Sci USA 1999; 96(11): 6255-60.
[http://dx.doi.org/10.1073/pnas.96.11.6255] [PMID: 10339574]
[76]
Bogachev AV, Baykov AA, Bertsova YV. Flavin transferase: the maturation factor of flavin-containing oxidoreductases. Biochem Soc Trans 2018; 46(5): 1161-9.
[http://dx.doi.org/10.1042/BST20180524] [PMID: 30154099]
[77]
Kaneko M, Cahill GM. Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol 2005; 3(2)e34
[http://dx.doi.org/10.1371/journal.pbio.0030034] [PMID: 15685291]
[78]
Dekens MP, Whitmore D. Autonomous onset of the circadian clock in the zebrafish embryo. EMBO J 2008; 27(20): 2757-65.
[http://dx.doi.org/10.1038/emboj.2008.183] [PMID: 18800057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy