Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Exosomes in Photodynamic Anticancer Therapy

Author(s): Yuan Jiang, Chuanshan Xu*, Wingnang Leung*, Mei Lin, Xiaowen Cai, Huanhuan Guo, Jiyong Zhang and Fanwen Yang

Volume 27, Issue 40, 2020

Page: [6815 - 6824] Pages: 10

DOI: 10.2174/0929867326666190918122221

Price: $65

conference banner
Abstract

Photodynamic Therapy (PDT) is a promising alternative treatment for malignancies based on photochemical reaction induced by Photosensitizers (PS) under light irradiation. Recent studies show that PDT caused the abundant release of exosomes from tumor tissues. It is well-known that exosomes as carriers play an important role in cell-cell communication through transporting many kinds of bioactive molecules (e.g. lipids, proteins, mRNA, miRNA and lncRNA). Therefore, to explore the role of exosomes in photodynamic anticancer therapy has been attracting significant attention. In the present paper, we will briefly introduce the basic principle of PDT and exosomes, and focus on discussing the role of exosomes in photodynamic anticancer therapy, to further enrich and boost the development of PDT.

Keywords: Photodynamic therapy, tumor, exosomes, tumor microenvironment, tumor metastasis, tumor drug resistance.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Schachtschneider, K.M.; Schwind, R.M.; Newson, J.; Kinachtchouk, N.; Rizko, M.; Mendoza-Elias, N.; Grippo, P.; Principe, D.R.; Park, A.; Overgaard, N.H.; Jungersen, G.; Garcia, K.D.; Maker, A.V.; Rund, L.A.; Ozer, H.; Gaba, R.C.; Schook, L.B. The oncopig cancer model: an innovative large animal translational oncology platform. Front. Oncol., 2017, 7, 190.
[http://dx.doi.org/10.3389/fonc.2017.00190] [PMID: 28879168]
[3]
Mallidi, S.; Anbil, S.; Bulin, A.L.; Obaid, G.; Ichikawa, M.; Hasan, T. Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics, 2016, 6(13), 2458-2487.
[http://dx.doi.org/10.7150/thno.16183] [PMID: 27877247]
[4]
Aubertin, K.; Silva, A.K.; Luciani, N.; Espinosa, A.; Djemat, A.; Charue, D.; Gallet, F.; Blanc-Brude, O.; Wilhelm, C. Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci. Rep., 2016, 6, 35376.
[http://dx.doi.org/10.1038/srep35376] [PMID: 27752092]
[5]
Suchorska, W.M.; Lach, M.S. The role of exosomes in tumor progression and metastasis. (review) Oncol. Rep., 2016, 35(3), 1237-1244.
[http://dx.doi.org/10.3892/or.2015.4507] [PMID: 26707854]
[6]
Jain, M.; Zellweger, M.; Wagnières, G.; van den Bergh, H.; Cook, S.; Giraud, M.N. Photodynamic therapy for the treatment of atherosclerotic plaque: lost in translation? Cardiovasc. Ther., 2017, 35(2)e12238
[http://dx.doi.org/10.1111/1755-5922.12238] [PMID: 27893195]
[7]
Chen, Z.; Woodburn, K.W.; Shi, C.; Adelman, D.C.; Rogers, C.; Simon, D.I. Photodynamic therapy with motexafin lutetium induces redox-sensitive apoptosis of vascular cells. Arterioscler. Thromb. Vasc. Biol., 2001, 21(5), 759-764.
[http://dx.doi.org/10.1161/01.ATV.21.5.759] [PMID: 11348871]
[8]
Rajagopal, C.; Harikumar, K.B. The origin and functions of exosomes in cancer. Front. Oncol., 2018, 8, 66.
[http://dx.doi.org/10.3389/fonc.2018.00066] [PMID: 29616188]
[9]
Simons, M.; Raposo, G. Exosomes-vesicular carriers for intercellular communication. Curr. Opin. Cell Biol., 2009, 21(4), 575-581.
[http://dx.doi.org/10.1016/j.ceb.2009.03.007] [PMID: 19442504]
[10]
Ruivo, C.F.; Adem, B.; Silva, M.; Melo, S.A. The biology of cancer exosomes: insights and new perspectives. Cancer Res., 2017, 77(23), 6480-6488.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0994] [PMID: 29162616]
[11]
Schmidt, O.; Teis, D. The ESCRT machinery. Curr. Biol., 2012, 22(4), R116-R120.
[http://dx.doi.org/10.1016/j.cub.2012.01.028] [PMID: 22361144]
[12]
Katzmann, D.J.; Babst, M.; Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell, 2001, 106(2), 145-155.
[http://dx.doi.org/10.1016/S0092-8674(01)00434-2] [PMID: 11511343]
[13]
Wollert, T.; Wunder, C.; Lippincott-Schwartz, J.; Hurley, J.H. Membrane scission by the ESCRT-III complex. Nature, 2009, 458(7235), 172-177.
[http://dx.doi.org/10.1038/nature07836] [PMID: 19234443]
[14]
Stuffers, S.; Sem Wegner, C.; Stenmark, H.; Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 2009, 10(7), 925-937.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00920.x] [PMID: 19490536]
[15]
Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brügger, B.; Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, 319(5867), 1244-1247.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[16]
Dreux, M.; Garaigorta, U.; Boyd, B.; Décembre, E.; Chung, J.; Whitten-Bauer, C.; Wieland, S.; Chisari, F.V. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe, 2012, 12(4), 558-570.
[http://dx.doi.org/10.1016/j.chom.2012.08.010] [PMID: 23084922]
[17]
Ghossoub, R.; Lembo, F.; Rubio, A.; Gaillard, C.B.; Bouchet, J.; Vitale, N.; Slavík, J.; Machala, M.; Zimmermann, P. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun., 2014, 5, 3477.
[http://dx.doi.org/10.1038/ncomms4477] [PMID: 24637612]
[18]
Guo, W.; Gao, Y.; Li, N.; Shao, F.; Wang, C.; Wang, P.; Yang, Z.; Li, R.; He, J. Exosomes: new players in cancer. (review) Oncol. Rep., 2017, 38(2), 665-675.
[http://dx.doi.org/10.3892/or.2017.5714] [PMID: 28627679]
[19]
Kowal, J.; Tkach, M.; Théry, C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol., 2014, 29, 116-125.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[20]
Kuninty, P.R.; Schnittert, J.; Storm, G.; Prakash, J. MicroRNA targeting to modulate tumor microenvironment. Front. Oncol., 2016, 6, 3.
[http://dx.doi.org/10.3389/fonc.2016.00003] [PMID: 26835418]
[21]
Bu, L.; Baba, H.; Yoshida, N.; Miyake, K.; Yasuda, T.; Uchihara, T.; Tan, P.; Ishimoto, T. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene, 2019, 38(25), 4887-4901.
[http://dx.doi.org/10.1038/s41388-019-0765-y] [PMID: 30816343]
[22]
Zhao, H.; Yang, L.; Baddour, J.; Achreja, A.; Bernard, V.; Moss, T.; Marini, J.C.; Tudawe, T.; Seviour, E.G.; San Lucas, F.A.; Alvarez, H.; Gupta, S.; Maiti, S.N.; Cooper, L.; Peehl, D.; Ram, P.T.; Maitra, A.; Nagrath, D. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 2016, 5e10250
[http://dx.doi.org/10.7554/elife.10250]] [PMID: 26920219]
[23]
Haga, H.; Yan, I.K.; Takahashi, K.; Wood, J.; Zubair, A.; Patel, T. Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth. J. Extracell. Vesicles, 2015, 4, 24900.
[http://dx.doi.org/10.3402/jev.v4.24900] [PMID: 25557794]
[24]
Webber, J.; Steadman, R.; Mason, M.D.; Tabi, Z.; Clayton, A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res., 2010, 70(23), 9621-9630.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1722] [PMID: 21098712]
[25]
Gu, J.; Qian, H.; Shen, L.; Zhang, X.; Zhu, W.; Huang, L.; Yan, Y.; Mao, F.; Zhao, C.; Shi, Y.; Xu, W. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One, 2012, 7(12)e52465
[http://dx.doi.org/10.1371/journal.pone.0052465] [PMID: 23285052]
[26]
Patel, A.K.; Vipparthi, K.; Thatikonda, V.; Arun, I.; Bhattacharjee, S.; Sharan, R.; Arun, P.; Singh, S. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis, 2018, 7(10), 78.
[http://dx.doi.org/10.1038/s41389-018-0087-x] [PMID: 30287850]
[27]
Rhim, A.D.; Oberstein, P.E.; Thomas, D.H.; Mirek, E.T.; Palermo, C.F.; Sastra, S.A.; Dekleva, E.N.; Saunders, T.; Becerra, C.P.; Tattersall, I.W.; Westphalen, C.B.; Kitajewski, J.; Fernandez-Barrena, M.G.; Fernandez-Zapico, M.E.; Iacobuzio-Donahue, C.; Olive, K.P.; Stanger, B.Z. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 2014, 25(6), 735-747.
[http://dx.doi.org/10.1016/j.ccr.2014.04.021] [PMID: 24856585]
[28]
Harper, J.; Sainson, R.C. Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin. Cancer Biol., 2014, 25, 69-77.
[http://dx.doi.org/10.1016/j.semcancer.2013.12.005] [PMID: 24406209]
[29]
Aslan, C.; Maralbashi, S.; Salari, F.; Kahroba, H.; Sigaroodi, F.; Kazemi, T.; Kharaziha, P. Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy. J. Cell. Physiol., 2019, 234(10), 16885-16903.
[http://dx.doi.org/10.1002/jcp.28374] [PMID: 30793767]
[30]
Shao, C.; Yang, F.; Miao, S.; Liu, W.; Wang, C.; Shu, Y.; Shen, H. Role of hypoxia-induced exosomes in tumor biology. Mol. Cancer, 2018, 17(1), 120.
[http://dx.doi.org/10.1186/s12943-018-0869-y] [PMID: 30098600]
[31]
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest., 2016, 126(4), 1208-1215.
[http://dx.doi.org/10.1172/jci81135] [PMID: 27035812]
[32]
Whiteside, T.L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest., 2016, 126(4), 1216-1223.
[http://dx.doi.org/10.1172/jci81136] [PMID: 26927673]
[33]
Whiteside, T.L. The effect of tumor-derived exosomes on immune regulation and cancer immunotherapy. Future Oncol., 2017, 13(28), 2583-2592.
[http://dx.doi.org/10.2217/fon-2017-0343] [PMID: 29198150]
[34]
Greening, D.W.; Gopal, S.K.; Xu, R.; Simpson, R.J.; Chen, W. Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol., 2015, 40, 72-81.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.009] [PMID: 25724562]
[35]
Wan, Z.; Gao, X.; Dong, Y.; Zhao, Y.; Chen, X.; Yang, G.; Liu, L. Exosome-mediated cell-cell communication in tumor progression. Am. J. Cancer Res., 2018, 8(9), 1661-1673.
[PMID: 30323961]
[36]
Diepenbruck, M.; Christofori, G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol., 2016, 43, 7-13.
[http://dx.doi.org/10.1016/j.ceb.2016.06.002] [PMID: 27371787]
[37]
Li, K.; Chen, Y.; Li, A.; Tan, C.; Liu, X. Exosomes play roles in sequential processes of tumor metastasis. Int. J. Cancer, 2019, 144(7), 1486-1495.
[http://dx.doi.org/10.1002/ijc.31774] [PMID: 30155891]
[38]
Wee, I.; Syn, N.; Sethi, G.; Goh, B.C.; Wang, L. Role of tumor-derived exosomes in cancer metastasis. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(1), 12-19.
[http://dx.doi.org/10.1016/j.bbcan.2018.10.004] [PMID: 30419312]
[39]
Franzen, C.A.; Blackwell, R.H.; Todorovic, V.; Greco, K.A.; Foreman, K.E.; Flanigan, R.C.; Kuo, P.C.; Gupta, G.N. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis, 2015, 4(8)e163
[http://dx.doi.org/10.1038/oncsis.2015.21] [PMID: 26280654]
[40]
Le, M.T.; Hamar, P.; Guo, C.; Basar, E.; Perdigão-Henriques, R.; Balaj, L.; Lieberman, J. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J. Clin. Invest., 2014, 124(12), 5109-5128.
[http://dx.doi.org/10.1172/JCI75695] [PMID: 25401471]
[41]
Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[42]
Ostenfeld, M.S.; Jeppesen, D.K.; Laurberg, J.R.; Boysen, A.T.; Bramsen, J.B.; Primdal-Bengtson, B.; Hendrix, A.; Lamy, P.; Dagnaes-Hansen, F.; Rasmussen, M.H.; Bui, K.H.; Fristrup, N.; Christensen, E.I.; Nordentoft, I.; Morth, J.P.; Jensen, J.B.; Pedersen, J.S.; Beck, M.; Theodorescu, D.; Borre, M.; Howard, K.A.; Dyrskjøt, L.; Ørntoft, T.F. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res., 2014, 74(20), 5758-5771.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3512] [PMID: 25261234]
[43]
Reymond, N.; d’Água, B.B.; Ridley, A.J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer, 2013, 13(12), 858-870.
[http://dx.doi.org/10.1038/nrc3628] [PMID: 24263189]
[44]
Heymann, D.; Téllez-Gabriel, M. Circulating tumor cells: the importance of single cell analysis. Adv. Exp. Med. Biol., 2018, 1068, 45-58.
[http://dx.doi.org/10.1007/978-981-13-0502-3_5] [PMID: 29943295]
[45]
Dawood, S.; Cristofanilli, M. Integrating circulating tumor cell assays into the management of breast cancer. Curr. Treat. Options Oncol., 2007, 8(1), 89-95.
[http://dx.doi.org/10.1007/s11864-007-0018-0] [PMID: 17634836]
[46]
Liu, Y.; Cao, X. Characteristics and significance of the pre-metastatic niche. Cancer Cell, 2016, 30(5), 668-681.
[http://dx.doi.org/10.1016/j.ccell.2016.09.011] [PMID: 27846389]
[47]
Kaplan, R.N.; Riba, R.D.; Zacharoulis, S.; Bramley, A.H.; Vincent, L.; Costa, C.; MacDonald, D.D.; Jin, D.K.; Shido, K.; Kerns, S.A.; Zhu, Z.; Hicklin, D.; Wu, Y.; Port, J.L.; Altorki, N.; Port, E.R.; Ruggero, D.; Shmelkov, S.V.; Jensen, K.K.; Rafii, S.; Lyden, D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 2005, 438(7069), 820-827.
[http://dx.doi.org/10.1038/nature04186] [PMID: 16341007]
[48]
Kaiser, J. Malignant messengers. Science, 2016, 352(6282), 164-166.
[http://dx.doi.org/10.1126/science.352.6282.164] [PMID: 27124448]
[49]
Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B.A.; Callahan, M.K.; Yuan, J.; Martins, V.R.; Skog, J.; Kaplan, R.N.; Brady, M.S.; Wolchok, J.D.; Chapman, P.B.; Kang, Y.; Bromberg, J.; Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med., 2012, 18(6), 883-891.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
[50]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[51]
Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O’Connor, S.T.; Li, S.; Chin, A.R.; Somlo, G.; Palomares, M.; Li, Z.; Tremblay, J.R.; Tsuyada, A.; Sun, G.; Reid, M.A.; Wu, X.; Swiderski, P.; Ren, X.; Shi, Y.; Kong, M.; Zhong, W.; Chen, Y.; Wang, S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol., 2015, 17(2), 183-194.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[52]
Rana, S.; Malinowska, K.; Zöller, M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia, 2013, 15(3), 281-295.
[http://dx.doi.org/10.1593/neo.122010] [PMID: 23479506]
[53]
Keerthikumar, S.; Gangoda, L.; Liem, M.; Fonseka, P.; Atukorala, I.; Ozcitti, C.; Mechler, A.; Adda, C.G.; Ang, C.S.; Mathivanan, S. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget, 2015, 6(17), 15375-15396.
[http://dx.doi.org/10.18632/oncotarget.3801] [PMID: 25944692]
[54]
Dai, X.; Chen, C.; Yang, Q.; Xue, J.; Chen, X.; Sun, B.; Luo, F.; Liu, X.; Xiao, T.; Xu, H.; Sun, Q.; Zhang, A.; Liu, Q. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis., 2018, 9(5), 454.
[http://dx.doi.org/10.1038/s41419-018-0485-1] [PMID: 29674685]
[55]
Abudoureyimu, M.; Zhou, H.; Zhi, Y.; Wang, T.; Feng, B.; Wang, R.; Chu, X. Recent progress in the emerging role of exosome in hepatocellular carcinoma. Cell Prolif., 2019, 52(2)e12541
[http://dx.doi.org/10.1111/cpr.12541] [PMID: 30397975]
[56]
Zhang, C.; Ji, Q.; Yang, Y.; Li, Q.; Wang, Z. Exosome: function and role in cancer metastasis and drug resistance. Technol. Cancer Res. Treat., 2018, 171533033818763450
[http://dx.doi.org/10.1177/1533033818763450] [PMID: 29681222]
[57]
Xiao, X.; Yu, S.; Li, S.; Wu, J.; Ma, R.; Cao, H.; Zhu, Y.; Feng, J. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One, 2014, 9(2)e89534
[http://dx.doi.org/10.1371/journal.pone.0089534] [PMID: 24586853]
[58]
Lv, M.M.; Zhu, X.Y.; Chen, W.X.; Zhong, S.L.; Hu, Q.; Ma, T.F.; Zhang, J.; Chen, L.; Tang, J.H.; Zhao, J.H. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol., 2014, 35(11), 10773-10779.
[http://dx.doi.org/10.1007/s13277-014-2377-z] [PMID: 25077924]
[59]
Shedden, K.; Xie, X.T.; Chandaroy, P.; Chang, Y.T.; Rosania, G.R. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res., 2003, 63(15), 4331-4337.
[PMID: 12907600]
[60]
Nedaeinia, R.; Manian, M.; Jazayeri, M.H.; Ranjbar, M.; Salehi, R.; Sharifi, M.; Mohaghegh, F.; Goli, M.; Jahednia, S.H.; Avan, A.; Ghayour-Mobarhan, M. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther., 2017, 24(2), 48-56.
[http://dx.doi.org/10.1038/cgt.2016.77] [PMID: 27982021]
[61]
Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol., 2008, 110(1), 13-21.
[http://dx.doi.org/10.1016/j.ygyno.2008.04.033] [PMID: 18589210]
[62]
Wang, M.; Ji, S.; Shao, G.; Zhang, J.; Zhao, K.; Wang, Z.; Wu, A. Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clin. Transl. Oncol., 2018, 20(7), 906-911.
[http://dx.doi.org/10.1007/s12094-017-1805-0] [PMID: 29143228]
[63]
Huang, X.; Yuan, T.; Liang, M.; Du, M.; Xia, S.; Dittmar, R.; Wang, D.; See, W.; Costello, B.A.; Quevedo, F.; Tan, W.; Nandy, D.; Bevan, G.H.; Longenbach, S.; Sun, Z.; Lu, Y.; Wang, T.; Thibodeau, S.N.; Boardman, L.; Kohli, M.; Wang, L. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol., 2015, 67(1), 33-41.
[http://dx.doi.org/10.1016/j.eururo.2014.07.035] [PMID: 25129854]
[64]
Szajnik, M.; Derbis, M.; Lach, M.; Patalas, P.; Michalak, M.; Drzewiecka, H.; Szpurek, D.; Nowakowski, A.; Spaczynski, M.; Baranowski, W.; Whiteside, T.L. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol. Obstet. (Sunnyvale), 2013(Suppl. 4), 3.
[http://dx.doi.org/10.4172/2161-0932.s4-003] [PMID: 24466501]
[65]
Dang, J.; He, H.; Chen, D.; Yin, L. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater. Sci., 2017, 5(8), 1500-1511.
[http://dx.doi.org/10.1039/C7BM00392G] [PMID: 28681887]
[66]
Min, H.; Wang, J.; Qi, Y.; Zhang, Y.; Han, X.; Xu, Y.; Xu, J.; Li, Y.; Chen, L.; Cheng, K.; Liu, G.; Yang, N.; Li, Y.; Nie, G. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater., 2019, 31(15)e1808200
[http://dx.doi.org/10.1002/adma.201808200] [PMID: 30773718]
[67]
Kubiak, M.; Łysenko, L.; Gerber, H.; Nowak, R. Cell reactions and immune responses to photodynamic therapy in oncology. Postepy Hig. Med. Dosw., 2016, 70(0), 735-742.
[http://dx.doi.org/10.5604/17322693.1208196] [PMID: 27383570]
[68]
Yu, X.; Zheng, H.; Chan, M.T.V.; Wu, W.K.K. Immune consequences induced by photodynamic therapy in non-melanoma skin cancers: a review. Environ. Sci. Pollut. Res. Int., 2018, 25(21), 20569-20574.
[http://dx.doi.org/10.1007/s11356-018-2426-z] [PMID: 29948701]
[69]
Jiang, Y.; Leung, A.W.; Wang, X.; Zhang, H.; Xu, C. Effect of photodynamic therapy with hypocrellin B on apoptosis, adhesion and migration of cancer cells. Int. J. Radiat. Biol., 2014, 90(7), 575-579.
[http://dx.doi.org/10.3109/09553002.2014.906765] [PMID: 24661233]
[70]
Chen, Y.J.; Jiang, H.T.; Cao, J.Y. Influence of photodynamic therapy on apoptosis and invasion of human cholangiocarcinoma QBC939 cell line. Chin. Med. Sci. J., 2015, 30(4), 252-259.
[http://dx.doi.org/10.1016/S1001-9294(16)30009-8] [PMID: 26960307]
[71]
Ghodasra, D.H.; Demirci, H. Photodynamic therapy for choroidal metastasis. Am. J. Ophthalmol., 2016, 161, 104-109.
[http://dx.doi.org/10.1016/j.ajo.2015.09.033] [PMID: 26432928]
[72]
El-Daly, S.M.; Abba, M.L.; Gamal-Eldeen, A.M. The role of microRNAs in photodynamic therapy of cancer. Eur. J. Med. Chem., 2017, 142, 550-555.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.011] [PMID: 29033001]
[73]
Fahey, J.M.; Girotti, A.W. Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: role of nitric oxide. Nitric Oxide, 2015, 49, 47-55.
[http://dx.doi.org/10.1016/j.niox.2015.05.006] [PMID: 26068242]
[74]
Spring, B.Q.; Rizvi, I.; Xu, N.; Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci., 2015, 14(8), 1476-1491.
[http://dx.doi.org/10.1039/C4PP00495G] [PMID: 25856800]
[75]
Rodríguez, M.E.; Catrinacio, C.; Ropolo, A.; Rivarola, V.A.; Vaccaro, M.I. A novel HIF-1α/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells. Photochem. Photobiol. Sci., 2017, 16(11), 1631-1642.
[http://dx.doi.org/10.1039/C7PP00161D] [PMID: 28936522]
[76]
Rapozzi, V.; Della Pietra, E.; Bonavida, B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol., 2015, 6, 311-317.
[http://dx.doi.org/10.1016/j.redox.2015.07.015] [PMID: 26319434]
[77]
Yang, Y.; Yang, X.; Li, H.; Li, C.; Ding, H.; Zhang, M.; Guo, Y.; Sun, M. Near-infrared light triggered liposomes combining photodynamic and chemotherapy for synergistic breast tumor therapy. Colloids Surf. B Biointerfaces, 2019, 173, 564-570.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.019] [PMID: 30347383]
[78]
Ozog, D.M.; Rkein, A.M.; Fabi, S.G.; Gold, M.H.; Goldman, M.P.; Lowe, N.J.; Martin, G.M.; Munavalli, G.S. Photodynamic therapy: a clinical consensus guide. Dermatol. Surg., 2016, 42(7), 804-827.
[http://dx.doi.org/10.1097/DSS.0000000000000800] [PMID: 27336945]
[79]
Sivasubramanian, M.; Chuang, Y.C.; Lo, L.W. Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deep-seated cancers. Molecules, 2019, 24(3)E520
[http://dx.doi.org/10.3390/molecules24030520] [PMID: 30709030]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy