Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Editorial

Drug Delivery Asia

Author(s): Istvan Toth and Mariusz Skwarczynski

Volume 16, Issue 7, 2019

Page: [586 - 587] Pages: 2

DOI: 10.2174/156720181607190917091556

conference banner
[1]
Swenson, E.S.; Curatolo, W.J. Intestinal permeability enhancement for proteins, peptides, and other polar drugs: Mechanisms and potential toxicity. Adv. Drug Deliv. Rev., 1992, 8, 39-92.
[2]
Zhong, W.; Skwarczynski, M.; Toth, I. Lipid core peptide system for gene, drug, and vaccine delivery. Aust. J. Chem., 2009, 62, 956-967.
[3]
Marasini, N.; Skwarczynski, M.; Toth, I. Oral delivery of nanoparticle-based vaccines. Expert Rev. Vaccines, 2014, 13, 1361-1376.
[4]
Adessi, C.; Soto, C. Converting a peptide into a drug: Strategies to improve stability and bioavailability. Curr. Med. Chem., 2002, 9, 963-978.
[5]
Ziora, Z.M.; Blaskovich, M.A.; Toth, I.; Cooper, M.A. Lipoamino acids as major components of absorption promoters in drug delivery. Curr. Top. Med. Chem., 2012, 12, 1562-1580.
[6]
Skwarczynski, M.; Ziora, Z.M.; Coles, D.J.; Lin, I.C.; Toth, I. Thymine, adenine and lipoamino acid based gene delivery systems. Chem. Commun., 2010, 46, 3140-3142.
[7]
Black, M.; Trent, A.; Tirrell, M.; Olive, C. Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists. Expert Rev. Vaccines, 2010, 9, 157-173.
[8]
Khatun, F.; Stephenson, R.J.; Toth, I. An overview of structural features of antibacterial glycoconjugate vaccines that influence their immunogenicity. Chem.-Eur. J., 2017, 23, 4233-4254.
[9]
Sedaghat, B.; Stephenson, R.; Toth, I. Targeting the mannose receptor with mannosylated subunit vaccines. Curr. Med. Chem., 2014, 21, 3405-3418.
[10]
Ziora, Z.M.; Wimmer, N.; New, R.; Skwarczynski, M.; Toth, I. Synthesis of glycolipopeptidic building blocks for carbohydrate receptor discovery. Carbohydr. Res., 2011, 346, 1439-1444.
[11]
Huang, Y.L.; Wun, C.Y. Carbohydrate-based vaccines: Challenges and opportunities. Expert Rev. Vaccines, 2010, 9, 1257-1274.
[12]
Yang, J.R.; Luo, Y.C.; Shibu, M.A.; Toth, I.; Skwarczynski, M. Cell-penetrating peptides: Efficient vectors for vaccine delivery. Curr. Drug Deliv., 2019, 16, 430-443.
[13]
Radis-Baptista, G.; Campelo, I.S.; Morlighem, J.E.R.L.; Melo, L.M.; Freitas, V.J.F. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J. Biotechnol., 2017, 252, 15-26.
[14]
Torchilin, V.P. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release, 2001, 73, 137-172.
[15]
Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.R.; Goyal, A.K. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv., 2016, 23, 717-728.
[16]
Nevagi, R.J.; Skwarczynski, M.; Toth, I. Polymers for subunit vaccine delivery. Eur. Polym. J., 2019, 114, 397-410.
[17]
Naseri-Nosar, M.; Ziora, Z.M. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr. Polym., 2018, 189, 379-398.
[18]
Marasini, N.; Ghaffar, K.A.; Giddam, A.K.; Batzloff, M.R.; Good, M.F.; Skwarczynski, M.; Toth, I. Highly immunogenic trimethyl chitosan-based delivery system for intranasal lipopeptide vaccines against group A streptococcus. Curr. Drug Deliv., 2017, 14, 701-708.
[19]
Jain, D.; Bar-Shalom, D. Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm., 2014, 40, 1576-1584.
[20]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9, 223-243.
[21]
Skwarczynski, M.; Toth, I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine (London, U. K.), 2014, 9, 2657-2669.
[22]
Skwarczynski, M.; Toth, I. Peptide-based subunit nanovaccines. Curr. Drug Deliv., 2011, 8, 282-289.
[23]
Ojea-Jimenez, I.; Comenge, J.; Garcia-Fernandez, L.; Megson, Z.A.; Casals, E.; Puntes, V.F. Engineered inorganic nanoparticles for drug delivery applications. Curr. Drug Metab., 2013, 14, 518-530.
[24]
Singh, R.; Lillard, J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86, 215-223.
[25]
Sahdev, P.; Ochyl, L.J.; Moon, J.J. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res., 2014, 31(10), 2563-2582.
[26]
Marasini, N.; Giddam, A.K.; Ghaffar, K.A.; Batzloff, M.R.; Good, M.F.; Skwarczynski, M.; Toth, I. Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group a Streptococcus. Nanomedicine (London, U.K.), 2016, 11, 1223-1236.
[27]
Marasini, N.; Giddam, A.K.; Khalil, Z.G.; Hussein, W.M.; Capon, R.J.; Batzloff, M.R.; Good, M.F.; Toth, I.; Skwarczynski, M. Double adjuvanting strategy for peptide-based vaccines: Trimethyl chitosan nanoparticles for lipopeptide delivery. Nanomedicine (Lond.), 2016, 11, 3223-3235.
[28]
Gulati, N.M.; Stewart, P.L.; Steinmetz, N.F. Bioinspired shielding strategies for nanoparticle drug delivery applications. Mol. Pharm., 2018, 15, 2900-2909.
[29]
Date, A.A.; Hanes, J.; Ensign, L.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J. Control. Release, 2016, 240, 504-526.
[30]
Wilkhu, J.S.; McNeil, S.E.; Anderson, D.E.; Perrie, Y. Characterization and optimization of bilosomes for oral vaccine delivery. J. Drug Target., 2013, 21, 291-299.
[31]
Marasini, N.; Skwarczynski, M.; Toth, I. Intranasal delivery of nanoparticle-based vaccines. Ther. Deliv., 2017, 8, 151-167.
[32]
Ghaffar, K.A.; Marasini, N.; Giddam, A.K.; Batzloff, M.R.; Good, M.F.; Skwarczynski, M.; Toth, I. Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomater., 2016, 41, 161-168.
[33]
Ghaffar, K.A.; Giddam, A.K.; Zaman, M.; Skwarczynski, M.; Toth, I. Liposomes as nanovaccine delivery systems. Curr. Top. Med. Chem., 2014, 14, 1194-1208.
[34]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26, 1261-1268.
[35]
Fernando, G.J.P.; Chen, X.; Primiero, C.A.; Yukiko, S.R.; Fairmaid, E.J.; Corbett, H.J.; Frazer, I.H.; Brown, L.E.; Kendall, M.A.F. Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. J. Control. Release, 2012, 159, 215-221.

© 2024 Bentham Science Publishers | Privacy Policy