Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Design and Application of Nanomaterials as Drug Carriers in Cancer Treatment

Author(s): Jia Hou, Xiaoyan Sun, Ying Huang, Shaohua Yang, Junjie Liu, Changhao Feng, Jun Ma and Bin Chen*

Volume 27, Issue 36, 2020

Page: [6112 - 6135] Pages: 24

DOI: 10.2174/0929867326666190816231409

Price: $65

conference banner
Abstract

The development of new medical cancer treatment technologies is of great significance in reducing cancer mortality. Traditional clinical cancer therapy has a short drug action time, difficulty in accurately targeting tumour tissues and high levels of toxicity in normal tissues. With the development of nanotechnology, nanomaterials have been used as drug carriers to specifically target cancer cells and release drugs into the tumour environment. This technique has become an important research hotspot in cancer treatment. There are several advantages of using nanomaterials for cancer treatment that improve the efficacy of drug delivery, including increased drug concentrations in the targeted tumour area, reduced toxicity in normal tissues and controlled drug release. In this work, we describe the latest research development on the use of nanomaterials for drug delivery in cancer treatment and explore related mechanistic pathways. In addition, the methods used to control drug release into the targeted area using nanocarriers are reviewed in detail. Overall, we present current achievements using nanomaterials and nanotechnologies in cancer treatment, followed by current challenges and future prospects.

Keywords: Cancer treatment, cancer cells, tissues, nanocarriers, drug delivery, targeted therapy, drug release.

[1]
Wang, X.; Yang, L.; Chen, Z.G.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[2]
Singhal, S.; Nie, S.; Wang, M.D. Nanotechnology applications in surgical oncology. Annu. Rev. Med., 2010, 61, 359-373.
[http://dx.doi.org/10.1146/annurev.med.60.052907.094936] [PMID: 20059343]
[3]
Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304.
[http://dx.doi.org/10.1517/17425240902780166] [PMID: 19327045]
[4]
Parveen, S.; Sahoo, S.K. Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs. Clin. Pharmacokinet., 2006, 45(10), 965-988.
[http://dx.doi.org/10.2165/00003088-200645100-00002] [PMID: 16984211]
[5]
Parveen, S.; Sahoo, S.K. Polymeric nanoparticles for cancer therapy. J. Drug Target., 2008, 16(2), 108-123.
[http://dx.doi.org/10.1080/10611860701794353] [PMID: 18274932]
[6]
Alexis, F.; Rhee, J.W.; Richie, J.P.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. New frontiers in nanotechnology for cancer treatment. Urol. Oncol., 2008, 26(1), 74-85.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.017] [PMID: 18190835]
[7]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[8]
Grodzinski, P.; Silver, M.; Molnar, L.K. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev. Mol. Diagn., 2006, 6(3), 307-318.
[http://dx.doi.org/10.1586/14737159.6.3.307] [PMID: 16706735]
[9]
Farokhzad, O.C.; Langer, R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58(14), 1456-1459.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[10]
Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today, 2010, 15(19-20), 842-850.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[11]
Herrero-Vanrell, R.; Rincón, A.C.; Alonso, M.; Reboto, V.; Molina-Martinez, I.T.; Rodríguez-Cabello, J.C. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J. Control. Release, 2005, 102(1), 113-122.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.001] [PMID: 15653138]
[12]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[13]
Singh, R.; Lillard, J.W., Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[14]
Dubin, C.H. Special delivery: pharmaceutical companies aim to target their drugs with nano precision. Mech. Eng., 2004, 126(9) S10 (Accessed: October 13, 2020).
[15]
Dass, C.R.; Su, T. Particle-mediated intravascular delivery of oligonucleotides to tumors: associated biology and lessons from genotherapy. Drug Deliv., 2001, 8(4), 191-213.
[http://dx.doi.org/10.1080/107175401317245886] [PMID: 11757778]
[16]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[17]
Xu, S.; Luo, Y.; Graeser, R.; Warnecke, A.; Kratz, F.; Hauff, P.; Licha, K.; Haag, R. Development of pH-responsive core-shell nanocarriers for delivery of therapeutic and diagnostic agents. Bioorg. Med. Chem. Lett., 2009, 19(3), 1030-1034.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.043] [PMID: 19097889]
[18]
Sahoo, S.K.; Jain, T.K.; Reddy, M.K.; Labhasetwar, V. Nano-sized carriers for drug delivery. NanoBiotechnology, 2008, 329-348.
[19]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[20]
Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today, 2012, 17(17-18), 1044-1052.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[21]
Marchal, S.; El Hor, A.; Millard, M.; Gillon, V.; Bezdetnaya, L. Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs, 2015, 75(14), 1601-1611.
[http://dx.doi.org/10.1007/s40265-015-0453-3] [PMID: 26323338]
[22]
Tan, Y.F.; Lao, L.L.; Xiong, G.M.; Venkatraman, S. Controlled-release nanotherapeutics: state of translation. J. Control. Release, 2018, 284, 39-48.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.014]] [PMID: 29902484]
[23]
Tanabe, M.; Ito, Y.; Tokudome, N.; Sugihara, T.; Miura, H.; Takahashi, S.; Seto, Y.; Iwase, T.; Hatake, K. Possible use of combination chemotherapy with mitomycin C and methotrexate for metastatic breast cancer pretreated with anthracycline and taxanes. Breast Cancer, 2009, 16(4), 301-306.
[24]
Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 2009, 30(29), 5737-5750.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.008] [PMID: 19631377]
[25]
Lehner, R.; Wang, X.; Marsch, S.; Hunziker, P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine (Lond.), 2013, 9(6), 742-757.
[http://dx.doi.org/10.1016/j.nano.2013.01.012] [PMID: 23434677]
[26]
Gu, F.; Zhang, L.; Teply, B.A.; Mann, N.; Wang, A.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2586-2591.
[http://dx.doi.org/10.1073/pnas.0711714105] [PMID: 18272481]
[27]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[28]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[29]
Huynh, N.T.; Roger, E.; Lautram, N.; Benoît, J.P.; Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond.), 2010, 5(9), 1415-1433.
[http://dx.doi.org/10.2217/nnm.10.113] [PMID: 21128723]
[30]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[31]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[32]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[33]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[34]
Sledge, G.W., Jr; Miller, K.D. Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur. J. Cancer, 2003, 39(12), 1668-1675.
[http://dx.doi.org/10.1016/S0959-8049(03)00273-9] [PMID: 12888360]
[35]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[36]
Lammers, T.; Subr, V.; Ulbrich, K.; Peschke, P.; Huber, P.E.; Hennink, W.E.; Storm, G. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials, 2009, 30(20), 3466-3475.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.040] [PMID: 19304320]
[37]
Verschraegen, C.F.; Skubitz, K.; Daud, A.; Kudelka, A.P.; Rabinowitz, I.; Allievi, C.; Eisenfeld, A.; Singer, J.W.; Oldham, F.B. A phase I and pharmacokinetic study of paclitaxel poliglumex and cisplatin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2009, 63(5), 903-910.
[http://dx.doi.org/10.1007/s00280-008-0813-8] [PMID: 18682950]
[38]
Elsherbini, A.A.; Saber, M.; Aggag, M.; El-Shahawy, A.; Shokier, H.A. Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn. Reson. Imaging, 2011, 29(2), 272-280.
[http://dx.doi.org/10.1016/j.mri.2010.08.010] [PMID: 21145190]
[39]
Leamon, C.P.; Cooper, S.R.; Hardee, G.E. Folate-liposome-mediated antisense oligo-deoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug. Chem., 2003, 14(4), 738-747.
[http://dx.doi.org/10.1021/bc020089t] [PMID: 12862426]
[40]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[41]
Eck, W.; Craig, G.; Sigdel, A.; Ritter, G.; Old, L.J.; Tang, L.; Brennan, M.F.; Allen, P.J.; Mason, M.D. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano, 2008, 2(11), 2263-2272.
[http://dx.doi.org/10.1021/nn800429d] [PMID: 19206392]
[42]
Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv., 2010, 7(4), 429-444.
[http://dx.doi.org/10.1517/17425241003602259] [PMID: 20331353]
[43]
Langer, R. New methods of drug delivery. Science, 1990, 249(4976), 1527-1533.
[http://dx.doi.org/10.1126/science.2218494] [PMID: 2218494]
[44]
Emerich, D.F.; Thanos, C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther., 2003, 3(4), 655-663.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[45]
Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled dcrug release. Int. J. Pharm., 2004, 282(1-2), 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.013] [PMID: 15336378]
[46]
Bungay, J.K. Synthetic Membranes: Science, Engineering and Applications; Science & Business Media, 2012, p. 181.
[47]
Bungay, P.M.; Lonsdale, H.K. Synthetic Membranes: Science, Engineering and Applications; Science & Business Media, 2012.
[48]
Sanders, H.J. Improved drug delivery. Chem. Eng. News, 1985, 63(13), 30.
[http://dx.doi.org/10.1021/cen-v063n013.p030]
[49]
Uhrich, K.E.; Cannizzaro, S.M.; Langer, R.S.; Shakesheff, K.M. Polymeric systems for controlled drug release. Chem. Rev., 1999, 99(11), 3181-3198.
[http://dx.doi.org/10.1021/cr940351u] [PMID: 11749514]
[50]
Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21), 12273-12286.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[51]
Lee, E.S.; Gao, Z.; Bae, Y.H. Recent progress in tumor pH targeting nanotechnology. J. Control. Release, 2008, 132(3), 164-170.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.003] [PMID: 18571265]
[52]
Arifin, D.Y.; Lee, L.Y.; Wang, C.H. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv. Drug Deliv. Rev., 2006, 58(12-13), 1274-1325.
[http://dx.doi.org/10.1016/j.addr.2006.09.007] [PMID: 17097189]
[53]
Saltzman, W.M.; Fung, L.K. Polymeric implants for cancer chemotherapy. Adv. Drug Deliv. Rev., 1997, 26(2-3), 209-230.
[http://dx.doi.org/10.1016/S0169-409X(97)00036-7] [PMID: 10837544]
[54]
Pillai, O.; Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol., 2001, 5(4), 447-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00227-1] [PMID: 11470609]
[55]
Kanjickal, D.G.; Lopina, S.T. Modeling of drug release from polymeric delivery systems-a review. Crit. Rev. Ther. Drug, 2004, 21(5), 345-386.
[http://dx.doi.org/10.1615/critrevtherdrugcarriersyst.v21.i5.10] [PMID: 15717734]
[56]
Zhang, L.; Chan, J.M.; Gu, F.X.; Rhee, J.W.; Wang, A.Z.; Radovic-Moreno, A.F.; Alexis, F.; Langer, R.; Farokhzad, O.C. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano, 2008, 2(8), 1696-1702.
[http://dx.doi.org/10.1021/nn800275r] [PMID: 19206374]
[57]
Biondi, M.; Ungaro, F.; Quaglia, F.; Netti, P.A. Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev., 2008, 60(2), 229-242.
[http://dx.doi.org/10.1016/j.addr.2007.08.038] [PMID: 18031864]
[58]
Tallury, P.; Alimohammadi, N.; Kalachandra, S. Poly(ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: effect of drug combination, copolymer composition and coating on the drug release rate. Dent. Mater., 2007, 23(4), 404-409.
[http://dx.doi.org/10.1016/j.dental.2006.02.011] [PMID: 16556460]
[59]
Fukushima, K. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater. Sci., 2016, 4(1), 9-24.
[http://dx.doi.org/10.1039/C5BM00123D] [PMID: 26323327]
[60]
Ma, Y.; Zheng, Y.; Zeng, X.; Jiang, L.; Chen, H.; Liu, R.; Mei, L. Novel docetaxel-loaded nanoparticels based on PCL-Tween 80 copolymer for cancer treatment. Int. J. Nanomedicine, 2011, 6, 2679-2688.
[http://dx.doi.org/10.2147/ijn.s25251] [PMID: 22114498]
[61]
Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2), 103-114.
[http://dx.doi.org/10.1016/0142-9612(96)85755-3] [PMID: 8624387]
[62]
Marin, E.; Briceño, M.I.; Caballero-George, C. Critical evaluation of biodegradable polymers used in nanodrugs. Int. J. Nanomedicine, 2013, 8, 3071-3090.
[http://dx.doi.org/10.2147/ijn.s47186] [PMID: 23990720]
[63]
Park, E.S.; Maniar, M.; Shah, J.C. Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release. J. Control. Release, 1998, 52(1-2), 179-189.
[http://dx.doi.org/10.1016/S0168-3659(97)00223-X] [PMID: 9685948]
[64]
Park, H.; Park, K.; Shalaby, W.S.W. Biodegradable hydrogels for drug delivery, 2011.
[65]
Wang, X.; Venkatraman, S.S.; Boey, F.Y.C.; Loo, J.S.; Tan, L.P. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials, 2006, 27(32), 5588-5595.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.016] [PMID: 16879865]
[66]
Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-a review. Int. J. Pharm., 2011, 415(1-2), 34-52.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.049] [PMID: 21640806]
[67]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[68]
Lu, L.; Peter, S.J.; Lyman, M.D.; Lai, H.L.; Leite, S.M.; Tamada, J.A.; Uyama, S.; Vacanti, J.P.; Langer, R.; Mikos, A.G. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials, 2000, 21(18), 1837-1845.
[http://dx.doi.org/10.1016/S0142-9612(00)00047-8] [PMID: 10919687]
[69]
Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer, 2011, 11(9), 671-677.
[http://dx.doi.org/10.1038/nrc3110] [PMID: 21833026]
[70]
Deng, G.; Wang, X.Y.; Zhou, Z.G. Nano-carriers and their drug release. Journal of Shanghai Normal University, 2017, 6, 1000-5137.
[71]
Gao, W.; Chan, J.M.; Farokhzad, O.C. pH-responsive nanoparticles for drug delivery. Mol. Pharm., 2010, 7(6), 1913-1920.
[http://dx.doi.org/10.1021/mp100253e] [PMID: 20836539]
[72]
Yameen, B.; Choi, W.I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release, 2014, 190, 485-499.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.038] [PMID: 24984011]
[73]
Bontha, S.; Kabanov, A.V.; Bronich, T.K. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J. Control. Release, 2006, 114(2), 163-174.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.015] [PMID: 16914223]
[74]
Petrova, S.; Jäger, E.; Konefał, R.; Jäger, A.; Venturini, C.G.; Spěváček, J.; Štěpánek, P. Novel poly (ethylene oxide monomethyl ether)-b-poly (ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polym. Chem., 2014, 5(12), 3884-3893.
[http://dx.doi.org/10.1039/C4PY00114A]
[75]
Hu, J.; He, J.; Zhang, M.; Ni, P. Precise modular synthesis and a structure-property study of acid-cleavable star-block copolymers for pH-triggered drug delivery. Polym. Chem., 2015, 6(9), 1553-1566.
[http://dx.doi.org/10.1039/C4PY01391C]
[76]
Oberoi, H.S.; Laquer, F.C.; Marky, L.A.; Kabanov, A.V.; Bronich, T.K. Core cross-linked block ionomer micelles as pH-responsive carriers for cis-diamminedichloroplatinum (II). J. Control. Release, 2011, 153(1), 64-72.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.028] [PMID: 21497174]
[77]
Jo, S.M.; Kim, J.C. pH sensitivities of egg phosphatidylcholine liposomes and dioleoylphosphatidy-lethanolamine liposomes triggered by poly (N-isopropylacrylamide-co-meth-acrylic acid-co-octadecylacrylate). Colloid Polym. Sci., 2009, 287(9), 1065-1070.
[http://dx.doi.org/10.1007/s00396-009-2065-5]]
[78]
Ding, Y.; Kang, Y.; Zhang, X. Enzyme-responsive polymer assemblies constructed through covalent synthesis and supramolecular strategy. Chem. Commun. (Camb.), 2015, 51(6), 996-1003.
[79]
De La Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev., 2012, 64(11), 967-978.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[80]
Luo, K.; Yang, J.; Kopečková, P.; Kopecek, J. Biodegradable multiblock poly [N-(2-hydroxypropyl) methacrylamide] via reversible addition-fragmentation chain transfer polymerization and click chemistry. Macromolecules, 2011, 44(8), 2481-2488.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[81]
Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide dendrimer-doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(8), 1299-1308.
[http://dx.doi.org/10.1002/adhm.201300601] [PMID: 24706635]
[82]
Bernardos, A.; Mondragón, L.; Aznar, E.; Marcos, M.D.; Martinez-Mañez, R.; Sancenon, F.; Soto, J.; Barat, J.M.; Perez-Paya, E.; Guillem, C.; Amoros, P. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano, 2010, 4(11), 6353-6368.
[http://dx.doi.org/10.1021/nn101499d]] [PMID: 20958020]
[83]
Thornton, P.D.; Mart, R.J.; Ulijn, R.V. Enzyme-esponsive polymer hydrogel particles for controlled release. Adv. Mater., 2007, 19(9), 1252-1256.
[84]
Li, Y.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 2012, 41(6), 2193-2221.
[http://dx.doi.org/10.1039/C1CS15203C] [PMID: 22116474]
[85]
Hu, J.; Zhang, G.; Liu, S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev., 2012, 41(18), 5933-5949.
[http://dx.doi.org/10.1039/c2cs35103j] [PMID: 22695880]
[86]
Samarajeewa, S.; Shrestha, R.; Li, Y.; Wooley, K.L. Degradability of poly(lactic acid)-containing nanoparticles: enzymatic access through a cross-linked shell barrier. J. Am. Chem. Soc., 2012, 134(2), 1235-1242.
[http://dx.doi.org/10.1021/ja2095602] [PMID: 22257265]
[87]
Aimetti, A.A.; Machen, A.J.; Anseth, K.S. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials, 2009, 30(30), 6048-6054.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.043] [PMID: 19674784]
[88]
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[89]
Wang, Y.; Shim, M.S.; Levinson, N.S.; Sung, H.W.; Xia, Y. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater., 2014, 24(27), 4206-4220.
[http://dx.doi.org/10.1002/adfm.201400279] [PMID: 25477774]
[90]
Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9(2), 101-113.
[http://dx.doi.org/10.1038/nmat2614] [PMID: 20094081]
[91]
Dewhirst, M.W.; Vujaskovic, Z.; Jones, E.; Thrall, D. Re-setting the biologic rationale for thermal therapy. Int. J. Hyperthermia, 2005, 21(8), 779-790.
[http://dx.doi.org/10.1080/02656730500271668] [PMID: 16338861]
[92]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[93]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[94]
Aw, M.S.; Kurian, M.; Losic, D. Polymeric micelles for multidrug delivery and combination therapy. Chemistry, 2013, 19(38), 12586-12601.
[http://dx.doi.org/10.1002/chem.201302097] [PMID: 23943229]
[95]
Gobin, A.M.; Lee, M.H.; Halas, N.J.; James, W.D.; Drezek, R.A.; West, J.L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett., 2007, 7(7), 1929-1934.
[http://dx.doi.org/10.1021/nl070610y] [PMID: 17550297]
[96]
Yatvin, M.B.; Weinstein, J.N.; Dennis, W.H.; Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 1978, 202(4374), 1290-1293.
[http://dx.doi.org/10.1126/science.364652] [PMID: 364652]
[97]
Tagami, T.; Foltz, W.D.; Ernsting, M.J.; Lee, C.M.; Tannock, I.F.; May, J.P.; Li, S.D. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials, 2011, 32(27), 6570-6578.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.029] [PMID: 21641639]
[98]
Lee, S.H.; Choi, S.H.; Kim, S.H.; Park, T.G. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J. Control. Release, 2008, 125(1), 25-32.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.011] [PMID: 17976853]
[99]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2001, 53(3), 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[100]
Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C.G.; Meier, W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases, 2012, 7(1-4), 9.
[http://dx.doi.org/10.1007/s13758-011-0009-3] [PMID: 22589052]
[101]
Xia, Y.; Burke, N.A.D.; Stöver, H.D.H. End group effect on the thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2006, 39(6), 2275-2283.
[http://dx.doi.org/10.1021/ma0519617]
[102]
Wei, H.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci., 2009, 34(9), 893-910.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.05.002]
[103]
Chung, J.E.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release, 1999, 62(1-2), 115-127.
[http://dx.doi.org/10.1016/S0168-3659(99)00029-2] [PMID: 10518643]
[104]
Yi, X.; Wang, F.; Qin, W.; Yang, X.; Yuan, J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int. J. Nanomedicine, 2014, 9, 1347-1365.
[http://dx.doi.org/10.2147/IJN.S60206] [PMID: 24648733]
[105]
Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev., 2012, 64(11), 1005-1020.
[http://dx.doi.org/10.1016/j.addr.2012.02.006] [PMID: 22386560]
[106]
Zheng, M.; Yue, C.; Ma, Y.; Gong, P.; Zhao, P.; Zheng, C.; Sheng, Z.; Zhang, P.; Wang, Z.; Cai, L. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3), 2056-2067.
[http://dx.doi.org/10.1021/nn400334y] [PMID: 23413798]
[107]
Zhang, H.; Zhu, X.; Ji, Y.; Jiao, X.; Chen, Q.; Hou, L.; Zhang, H.; Zhang, Z. Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(30), 6310-6326.
[http://dx.doi.org/10.1039/C5TB00904A] [PMID: 32262750]
[108]
You, J.; Zhang, R.; Xiong, C.; Zhong, M.; Melancon, M.; Gupta, S.; Nick, A.M.; Sood, A.K.; Li, C. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res., 2012, 72(18), 4777-4786.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1003] [PMID: 22865457]
[109]
Lee, S.M.; Park, H.; Choi, J.W.; Park, Y.N.; Yun, C.O.; Yoo, K.H. Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed. Engl., 2011, 50(33), 7581-7586.
[http://dx.doi.org/10.1002/anie.201101783] [PMID: 21721086]
[110]
Ma, Y.; Liang, X.; Tong, S.; Bao, G.; Ren, Q.; Dai, Z. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light triggered drug release, and photothermal therapy. Adv. Funct. Mater., 2013, 23(7), 815-822.
[http://dx.doi.org/10.1002/adfm.201201663]
[111]
Agarwal, A.; Mackey, M.A.; El-Sayed, M.A.; Bellamkonda, R.V. Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano, 2011, 5(6), 4919-4926.
[http://dx.doi.org/10.1021/nn201010q] [PMID: 21591812]
[112]
Lukianova-Hleb, E.Y.; Belyanin, A.; Kashinath, S.; Wu, X.; Lapotko, D.O. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials, 2012, 33(6), 1821-1826.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.015] [PMID: 22137124]
[113]
Yang, H.W.; Hua, M.Y.; Liu, H.L.; Huang, C.Y.; Tsai, R.Y.; Lu, Y.J.; Chen, J.Y.; Tang, H.J.; Hsien, H.Y.; Chang, Y.S.; Yen, T.C.; Chen, P.Y.; Wei, K.C. Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials, 2011, 32(27), 6523-6532.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.047] [PMID: 21645920]
[114]
Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 2010, 62(2), 144-149.
[http://dx.doi.org/10.1016/j.phrs.2010.01.014] [PMID: 20149874]
[115]
Colombo, M.; Carregal-Romero, S.; Casula, M.F.; Gutiérrez, L.; Morales, M.P.; Böhm, I.B.; Heverhagen, J.T.; Prosperi, D.; Parak, W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev., 2012, 41(11), 4306-4334.
[http://dx.doi.org/10.1039/c2cs15337h] [PMID: 22481569]
[116]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16(2),023501.
[http://dx.doi.org/10.1088/1468-6996/16/2/023501] [PMID: 27877761]
[117]
Cazares-Cortes, E.; Espinosa, A.; Guigner, J.M.; Michel, A.; Griffete, N.; Wilhelm, C.; Ménager, C. Doxorubicin intracellular remote release from biocompatible oligo (ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia. ACS Appl. Mater. Interfaces, 2017, 9(31), 25775-25788.
[http://dx.doi.org/10.1021/acsami.7b06553] [PMID: 28723064]
[118]
Thorat, N.D.; Bohara, R.A.; Noor, M.R.; Dhamecha, D.; Soulimane, T.; Tofail, S.A. Effective cancer theranostics with polymer encapsulated superparamagnetic nanoparticles: combined effects of magnetic hyperthermia and controlled drug release. ACS Biomater. Sci. Eng., 2017, 3(7), 1332-1340.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00420]
[119]
Wang, L. Preparation of core-shell structured ferrite nanocube and its synergistic treatment with targeted magnetic hyperthermia and chemotherapy. Shanghai normal university,, 2015.
[120]
Satarkar, N.S.; Zach Hilt, J. Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater., 2008, 4(1), 11-16.
[http://dx.doi.org/10.1016/j.actbio.2007.07.009] [PMID: 17855176]
[121]
Hu, S.H.; Chen, S.Y.; Gao, X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano, 2012, 6(3), 2558-2565.
[http://dx.doi.org/10.1021/nn205023w] [PMID: 22339040]
[122]
Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 2010, 142(1), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.002] [PMID: 19819275]
[123]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A.R.; Haghani, L.; Bahrami, S.; Hamblin, M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[124]
Bang, J.H.; Suslick, K.S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater., 2010, 22(10), 1039-1059.
[http://dx.doi.org/10.1002/adma.200904093] [PMID: 20401929]
[125]
Meng, J.; Agrahari, V.; Youm, I. Advances intargeted drug delivery approaches for the central nervous system tumors: The inspiration of nanobiotechnology. J. Neuroimmune Pharmacol., 2017, 12(1), 84-98.
[http://dx.doi.org/10.1007/s11481-016-9698-1] [PMID: 27449494]
[126]
Zhu, X.; Guo, J.; He, C.; Geng, H.; Yu, G.; Li, J.; Zheng, H.; Ji, X.; Yan, F. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles. Sci. Rep., 2016, 6, 21683.
[http://dx.doi.org/10.1038/srep21683] [PMID: 26899550]
[127]
Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.018] [PMID: 26410788]
[128]
Yang, P.; Li, D.; Jin, S.; Ding, J.; Guo, J.; Shi, W.; Wang, C. Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials, 2014, 35(6), 2079-2088.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.057] [PMID: 24331704]
[129]
Huebsch, N.; Kearney, C.J.; Zhao, X.; Kim, J.; Cezar, C.A.; Suo, Z.; Mooney, D.J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. USA, 2014, 111(27), 9762-9767.
[http://dx.doi.org/10.1073/pnas.1405469111] [PMID: 24961369]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy